A. Maximum resistance in the series
B. Sum of all resistances
C. Average of all resistances
D. Minimum resistance presents in the series
Related Mcqs:
- The overall resistance for heat transfer through a series of flat resistance, is the _____________ of the resistances?
A. Average
B. Geometric mean
C. Product
D. Sum - A 10 cm dia steam pipe, carrying steam at 180°C, is covered with an insulation (conductivity = 0.6 W/m.°C). It losses heat to the surroundings at 30°C. Assume a heat transfer co-efficient of 0.8 W/m2.°C for heat transfer from surface to the surroundings. Neglect wall resistance of the pipe and film resistance of steam. If the insulation thickness is 2 cms, the rate of heat loss from this insulated pipe will be__________________?
A. Greater than that for un-insulated steam pipe
B. Less than that of the un-insulated steam pipe
C. Equal to that of the un-insulated steam pipe
D. Less than the steam pipe with 5 cms insulation - The overall heat transfer co-efficient for a shell and tube heat exchanger for clean surfaces is U0 = 400 W/m2.K. The fouling factor after one year of operation is found to be hd0 = 2000 W/m2.K. The overall heat transfer co-efficient at this time is _____________________?
A. 1200 W/m2.K
B. 894 W/m2.K
C. 333 W/m2.K
D. 287 W/m2.K - Extended heat transfer surface like fins are used to increase the heat transfer rate. Fin efficiency is defined as the ratio of heat transferred across the fin surface to the theoretical heat transfer across an equal area held at the________________?
A. Surrounding temperature
B. Average temperature of the fin
C. Temperature of the fin end
D. Constant temperature equal to that of the base - If average heat transfer co-efficient is ha and the local coefficient at the end of the plate is hl then in case of heat transfer to a fluid flowing over a flat plate, heated over its entire length________________?
A. ha = hl
B. ha = 2hl
C. ha = 0.5 hl
D. ha = 0.75 hl - A steel sphere of radius 0.1 m at 400°K is immersed in an oil at 300°K. If the centre of the sphere reaches 350°K in 20 minutes, how long will it take for a 0.05 m radius steel sphere to reach the same temperature (at the centre) under identical conditions? Assume that the conductive heat transfer co-efficient is infinitely large ?
A. 5 minutes
B. 10 minutes
C. 20 minutes
D. 40 minutes - Air is to be heated by condensing steam. Two heat exchangers are available (i) a shell and tube heat exchanger and (ii) a finned tube heat exchanger. Tube side heat transfer area are equal in both the cases. The recommended arrangement is________________?
A. Finned tube heat exchanger with air inside and steam outside
B. Finned tube heat exchanger with air outside and steam inside
C. Shell and tube heat exchanger with air inside tubes and steam on shell side
D. Shell and tube heat exchanger with air on shell side and steam inside tubes - The rate of heat transfer is a product of overall heat transfer co-efficient, the difference in temperature and the___________________?
A. Heating volume
B. Heat transfer area
C. Nusselt number
D. None of these - 1000 Kg of liquid at 30°C in a well stirred vessel has to be heated to 120°C, using immersed coils carrying condensing steam at 150°C. The area of the steam coils is 1.2 m2 and the overall heat transfer co-efficient to the liquid is 1500 W/m2.°C. Assuming negligible heat loss to the surrounding and specific heat capacity of the liquid to be 4 kJ/kg.°C, the time taken for the liquid to reach desired temperature will be__________________?
A. 15 min
B. 22 min
C. 44 min
D. 51 min - The thermal efficiency of a reversible heat engine operating between two given thermal reservoirs is 0.4. The device is used either as a refrigerator or as a heat pump between the same reservoirs. Then the coefficient of performance as a refrigerator (COP)R and the co-efficient of performance as a heat pump (COP)HP are _______________?
A. (COP)R = (COP)HP = 0.6
B. (COP)R = 2.5; (COP)HP = 1.5
C. (COP)R = 1.5; (COP)HP = 2.5
D. (COP)R = (COP)HP = 2.5