A. 5 minutes
B. 10 minutes
C. 20 minutes
D. 40 minutes
Related Mcqs:
- A sphere of radius ‘R1’ is enclosed in a sphere of radius ‘R2’. The view (or shape) factor for radiative heat transfer of the outer sphere with respect to the inner sphere is ________________?
A. 0
B. R2/(R1+R2)
C. 1
D. (R1/R2)2 - A 10 cm dia steam pipe, carrying steam at 180°C, is covered with an insulation (conductivity = 0.6 W/m.°C). It losses heat to the surroundings at 30°C. Assume a heat transfer co-efficient of 0.8 W/m2.°C for heat transfer from surface to the surroundings. Neglect wall resistance of the pipe and film resistance of steam. If the insulation thickness is 2 cms, the rate of heat loss from this insulated pipe will be__________________?
A. Greater than that for un-insulated steam pipe
B. Less than that of the un-insulated steam pipe
C. Equal to that of the un-insulated steam pipe
D. Less than the steam pipe with 5 cms insulation - 1000 Kg of liquid at 30°C in a well stirred vessel has to be heated to 120°C, using immersed coils carrying condensing steam at 150°C. The area of the steam coils is 1.2 m2 and the overall heat transfer co-efficient to the liquid is 1500 W/m2.°C. Assuming negligible heat loss to the surrounding and specific heat capacity of the liquid to be 4 kJ/kg.°C, the time taken for the liquid to reach desired temperature will be__________________?
A. 15 min
B. 22 min
C. 44 min
D. 51 min - Fouling factor for a heat exchanger is given by (where, U1 = heat transfer co-efficient of dirty surface U2 = heat transfer co-efficient of clean surface) ?
A. U1 – U2
B. 1/U1 – 1/U2
C. 1/U2 – 1/U1
D. U2 – U1 - The overall heat transfer co-efficient for a shell and tube heat exchanger for clean surfaces is U0 = 400 W/m2.K. The fouling factor after one year of operation is found to be hd0 = 2000 W/m2.K. The overall heat transfer co-efficient at this time is _____________________?
A. 1200 W/m2.K
B. 894 W/m2.K
C. 333 W/m2.K
D. 287 W/m2.K - A metal ball of radius 0.1 m at a uniform temperature of 90°C is left in air at 30°C. The density and the specific heat of the metal are 3000 kg/m3 and 0.4 kJ/kg.K respectively. The heat transfer co-efficient is 50 W/m2.K Neglecting the temperature gradients inside the ball, the time taken (in hours) for the ball to cool to 60°C is_________________?
A. 555
B. 55.5
C. 0.55
D. 0.15 - Extended heat transfer surface like fins are used to increase the heat transfer rate. Fin efficiency is defined as the ratio of heat transferred across the fin surface to the theoretical heat transfer across an equal area held at the________________?
A. Surrounding temperature
B. Average temperature of the fin
C. Temperature of the fin end
D. Constant temperature equal to that of the base - For a laminar flow of fluid in a circular tube, ‘h1’ is the convective heat transfer co-efficient at velocity ‘V1’. If the velocity is reduced by half and assuming the fluid properties are constant, the new convective heat transfer co-efficient is________________?
A. 1.26 h1
B. 0.794 h1
C. 0.574 h1
D. 1.741 h1 - For turbulent flow in a tube, the heat transfer co-efficient is obtained from the Dittus- Boelter correlation. If the tube diameter is halved and the flow rate is doubled, then the heat transfer co-efficient will change by a factor of________________?
A. 1
B. 1.74
C. 6.1
D. 37 - The rate of heat transfer is a product of overall heat transfer co-efficient, the difference in temperature and the___________________?
A. Heating volume
B. Heat transfer area
C. Nusselt number
D. None of these