A. CPA > CPB
B. CPA < CPB
C. kA < 0.5 kB
D. kA >2 kB
Related Mcqs:
- A wall has two layers of materials A and B; each made of a different material. Both the layers have the same thickness. The thermal conductivity of material A is twice that of B. Under the equilibrium, the temperature difference across the wall is 36°C. The temperature difference across the layer A is ______________ °C?
A. 6
B. 12
C. 18
D. 24 - A composite flat wall of a furnace is made of two materials ‘A’ and ‘B’. The thermal conductivity of ‘A’ is twice of that of material ‘B’, while the thickness of layer of ‘A’ is half that of B. If the temperature at the two sides of the wall are 400 and 1200°K, then the temperature drop (in °K) across the layer of material ‘A’ is________________?
A. 125
B. 133
C. 150
D. 160 - The inner wall of a furnace is at a temperature of 700°C. The composite wall is made of two substances, 10 and 20 cm thick with thermal conductivities of 0.05 and 0.1 W.m-1.°C- 1 respectively. The ambient air is at 30°C and the heat transfer co-efficient between the outer surface of wall and air is 20 W.m-2.°C-1. The rate of heat loss from the outer surface in W.m-2is__________________?
A. 165.4
B. 167.5
C. 172.5
D. 175 - If the thermal conductivity of a wall material is independent of temperature, the steady state temperature distribution in the very large thin plane wall having steady, uniform surface temperature follows _____________ law?
A. Parabolic
B. Hyperbolic
C. Linear
D. Logarithmic - If the thermal conductivity of a wall material is independent of temperature, the steady state temperature distribution in the very large thin plane wall having steady, uniform surface temperature follows ____________ law?
A. Hyperbolic
B. Parabolic
C. Linear
D. Logarithmic - The heat flux (from outside to inside) across an insulating wall with thermal conductivity, K = 0.04 W/m.°K and thickness 0.16m is 10 W/m2. The temperature of the inside wall is – 5°C. The outside wall temperature is___________________?
A. 25°C
B. 30°C
C. 35°C
D. 40°C - Walls of a cubical oven are of thickness l, and they are made of material of thermal conductivity k. The temperature inside the oven is 100°C and the inside heat transfer coefficient is „3k/l’. If the wall temperature on the outside is held at 25°C, what is the inside wall temperature in degree centigrade ?
A. 35.5
B. 43.75
C. 81.25
D. 48.25 - A 10 cm dia steam pipe, carrying steam at 180°C, is covered with an insulation (conductivity = 0.6 W/m.°C). It losses heat to the surroundings at 30°C. Assume a heat transfer co-efficient of 0.8 W/m2.°C for heat transfer from surface to the surroundings. Neglect wall resistance of the pipe and film resistance of steam. If the insulation thickness is 2 cms, the rate of heat loss from this insulated pipe will be__________________?
A. Greater than that for un-insulated steam pipe
B. Less than that of the un-insulated steam pipe
C. Equal to that of the un-insulated steam pipe
D. Less than the steam pipe with 5 cms insulation - Extended heat transfer surface like fins are used to increase the heat transfer rate. Fin efficiency is defined as the ratio of heat transferred across the fin surface to the theoretical heat transfer across an equal area held at the________________?
A. Surrounding temperature
B. Average temperature of the fin
C. Temperature of the fin end
D. Constant temperature equal to that of the base - The left face of a one dimensional slab of thickness 0.2 m is maintained at 80°C and the right face is exposed to air at 30°C. The thermal conductivity of the slab is 1.2 W/m.K and the heat transfer co-efficient from the right face is 10 W/m2.K. At steady state, the temperature of the right face in °C is____________________?
A. 77.2
B. 71.2
C. 63.8
D. 48.7