A. 0
B. R2/(R1+R2)
C. 1
D. (R1/R2)2
Related Mcqs:
- A steel sphere of radius 0.1 m at 400°K is immersed in an oil at 300°K. If the centre of the sphere reaches 350°K in 20 minutes, how long will it take for a 0.05 m radius steel sphere to reach the same temperature (at the centre) under identical conditions? Assume that the conductive heat transfer co-efficient is infinitely large ?
A. 5 minutes
B. 10 minutes
C. 20 minutes
D. 40 minutes - The inner wall of a furnace is at a temperature of 700°C. The composite wall is made of two substances, 10 and 20 cm thick with thermal conductivities of 0.05 and 0.1 W.m-1.°C- 1 respectively. The ambient air is at 30°C and the heat transfer co-efficient between the outer surface of wall and air is 20 W.m-2.°C-1. The rate of heat loss from the outer surface in W.m-2is__________________?
A. 165.4
B. 167.5
C. 172.5
D. 175 - Extended heat transfer surface like fins are used to increase the heat transfer rate. Fin efficiency is defined as the ratio of heat transferred across the fin surface to the theoretical heat transfer across an equal area held at the________________?
A. Surrounding temperature
B. Average temperature of the fin
C. Temperature of the fin end
D. Constant temperature equal to that of the base - If h1 = inner film co-efficient and /h2 = outer film co-efficient, then the overall heat transfer co-efficient is________________?
A. Always less than h1
B. Always between h1 and h2
C. Always higher than h2
D. Dependent on metal resistance - Fouling factor for a heat exchanger is given by (where, U1 = heat transfer co-efficient of dirty surface U2 = heat transfer co-efficient of clean surface) ?
A. U1 – U2
B. 1/U1 – 1/U2
C. 1/U2 – 1/U1
D. U2 – U1 - The overall heat transfer co-efficient for a shell and tube heat exchanger for clean surfaces is U0 = 400 W/m2.K. The fouling factor after one year of operation is found to be hd0 = 2000 W/m2.K. The overall heat transfer co-efficient at this time is _____________________?
A. 1200 W/m2.K
B. 894 W/m2.K
C. 333 W/m2.K
D. 287 W/m2.K - A 10 cm dia steam pipe, carrying steam at 180°C, is covered with an insulation (conductivity = 0.6 W/m.°C). It losses heat to the surroundings at 30°C. Assume a heat transfer co-efficient of 0.8 W/m2.°C for heat transfer from surface to the surroundings. Neglect wall resistance of the pipe and film resistance of steam. If the insulation thickness is 2 cms, the rate of heat loss from this insulated pipe will be__________________?
A. Greater than that for un-insulated steam pipe
B. Less than that of the un-insulated steam pipe
C. Equal to that of the un-insulated steam pipe
D. Less than the steam pipe with 5 cms insulation - The critical radius of insulation for a spherical shell is (where, K = thermal conductivity of insulating material h0 = heat transfer coefficient at the outer surface) ?
A. K/h0
B. 2K/h0
C. h0/K
D. h0/2K - Heat transfer by conduction results due to the transfer of free electrons, kinetic energy & vibrational energy from one molecule to another. Conduction heat transfer cannot take place____________________?
A. Between two bodies in physical contact with each other
B. Between two bodies not in physical contact with each other
C. From one part of a body to the another part of the same body
D. Both B & C - For turbulent flow in a tube, the heat transfer co-efficient is obtained from the Dittus- Boelter correlation. If the tube diameter is halved and the flow rate is doubled, then the heat transfer co-efficient will change by a factor of________________?
A. 1
B. 1.74
C. 6.1
D. 37