A. t = 283 s
B. t = 356 s
C. t = 400 s
D. t = 800 s
Related Mcqs:
- A 10 cm dia steam pipe, carrying steam at 180°C, is covered with an insulation (conductivity = 0.6 W/m.°C). It losses heat to the surroundings at 30°C. Assume a heat transfer co-efficient of 0.8 W/m2.°C for heat transfer from surface to the surroundings. Neglect wall resistance of the pipe and film resistance of steam. If the insulation thickness is 2 cms, the rate of heat loss from this insulated pipe will be__________________?
A. Greater than that for un-insulated steam pipe
B. Less than that of the un-insulated steam pipe
C. Equal to that of the un-insulated steam pipe
D. Less than the steam pipe with 5 cms insulation - Heat transfer by conduction results due to the transfer of free electrons, kinetic energy & vibrational energy from one molecule to another. Conduction heat transfer cannot take place____________________?
A. Between two bodies in physical contact with each other
B. Between two bodies not in physical contact with each other
C. From one part of a body to the another part of the same body
D. Both B & C - In case of _______________ boiling, the liquid temperature is below the saturation temperature and the boiling takes place in the vicinity of the heated surface?
A. Nucleate
B. Local
C. Pool
D. Saturated - In Joule’s experiment, an insulated container contains 20 kg of water initially at 25°C. It is stirred by an agitator, which is made to turn by a slowly falling body weighing 40 kg through a height of 4 m. The process is repeated 500 times. The acceleration due to gravity is 9.8 ms-2. Neglecting the heat capacity of agitator, the temperature of water (in °C) is________________?
A. 40.5
B. 34.4
C. 26.8
D. 25 - Extended heat transfer surface like fins are used to increase the heat transfer rate. Fin efficiency is defined as the ratio of heat transferred across the fin surface to the theoretical heat transfer across an equal area held at the________________?
A. Surrounding temperature
B. Average temperature of the fin
C. Temperature of the fin end
D. Constant temperature equal to that of the base - It is desired to concentrate a 20% salt solution (20 kg of salt in 100 kg of solution) to a 30% salt solution in an evaporator. Consider a feed of 300 kg/min at 30°C. The boiling point of the solution is 110°C, the latent heat of vaporisation is 2100 kJ/kg and the specific heat of the solution is 4 kJ/kg.K. The rate at which the heat has to be supplied in (kJ/min) to the evaporator is____________________?
A. 3.06 × 105
B. 6.12 × 105
C. 7.24 × 105
D. 9.08 × 105 - Resistance to heat flow by conduction is proportional to (where, t & ρ are thickness & density of the material respectively and A = area normal to the direction of heat flow.) ?
A. t
B. 1/ρ
C. 1/A
D. All A., B. & C. - Steady state one dimensional heat flow by conduction as given by Fourier’s low does not assume that_______________?
A. There is no internal heat generation
B. Boundary surfaces are isothermal
C. Material is anisotropic
D. Constant temperature gradient exists - Heat flux increases with temperature drop beyond the Leiden frost point in the plot of heat flux vs. temperature drop for a boiling liquid, because___________________?
A. Convection becomes important
B. Conduction becomes important
C. Radiation becomes important
D. Sub-cooled boiling occurs - Fouling factor for a heat exchanger is given by (where, U1 = heat transfer co-efficient of dirty surface U2 = heat transfer co-efficient of clean surface) ?
A. U1 – U2
B. 1/U1 – 1/U2
C. 1/U2 – 1/U1
D. U2 – U1