A. Stream
B. Path
C. Equipotential
D. None of these
Related Mcqs:
- Bernoulli’s equation for fluid flow is derived following certain assumptions. Out of the assumptions listed below, which set of assumptions is used in derivation of Bernoulli’s equation? A. Fluid flow is frictionless & irrotational. B. Fluid flow is steady. C. Fluid flow is uniform & turbulent. D. Fluid is compressible. E. Fluid is incompressible ?
A. A, C, D
B. B, D, E
C. A, B, E
D. A, D, E - In the Newton’s law range, the terminal velocity of a solid spherical particle falling through a stationary fluid mass is ______________ the fluid viscosity?
A. Directly proportional to
B. Inversely proportional to
C. Inversely proportional to the square root of
D. Independent of - Brownian movement is prominent in the particle size range of _____________ microns in case of settling of a particle in a fluid?
A. 2 to 3
B. 0.01 to 0.10
C. 200 to 300
D. 100 to 1000 - The pressure drop per unit length of pipe incurred by a fluid ‘X’ flowing through pipe is Δp. If another fluid ‘Y’ having both the specific gravity & density just double of that of fluid ‘X’, flows through the same pipe at the same flow rate/average velocity, then the pressure drop in this case will be__________________?
A. Δp
B. 2Δp
C. Δp2
D. Δp/2 - In which type of fluid flow, the velocity of flow of fluid changes from point to point in the fluid at any instant ?
A. Rotational
B. Unsteady
C. Turbulent
D. Non-uniform - In Newton’s law range, the terminal velocity of a solid spherical particle falling through a stationary fluid mass varies as the ______________ of its diameter?
A. Inverse
B. Square root
C. Second power
D. First power - A particle A of diameter 10 microns settles in an oil of specific gravity 0.9 and viscosity 10 poise under Stoke’s law. A particle B with diameter 20 microns settling in the same oil will have a settling velocity ?
A. Same as that of A
B. One fourth as that of A
C. Twice as that of A
D. Four times as that of A - The fluid velocity varies as the square of the cylindrical pipe diameter, in case of steady state laminar flow at constant pressure drop, for ______________ fluid?
A. Newtonian
B. Dilatant
C. Pseudo-plasticD. Non-Newtonian
- The terminal velocity of a particle moving through a fluid varies as dp n. The value of n is equal to _______________ in Stoke’s law regime?
A. 1
B. 0.5
C. 2
D. 1.5 - The terminal velocity of a solid spherical particle falling through a stationary fluid mass in the Stoke’s law range is proportional to the_____________________?
A. Inverse of fluid viscosity
B. Square of particle size
C. Difference in the densities of the particle & fluid
D. All A., B. and C.