A. Inverse
B. Square root
C. Second power
D. First power
Related Mcqs:
- In the Newton’s law range, the terminal velocity of a solid spherical particle falling through a stationary fluid mass is ______________ the fluid viscosity?
A. Directly proportional to
B. Inversely proportional to
C. Inversely proportional to the square root of
D. Independent of - The terminal velocity of a solid spherical particle falling through a stationary fluid mass in the Stoke’s law range is proportional to the_____________________?
A. Inverse of fluid viscosity
B. Square of particle size
C. Difference in the densities of the particle & fluid
D. All A., B. and C. - In Newton’s law range, the drag co-efficient for the motion of spherical particle in a stationary fluid is___________________?
A. 0.44
B. 0.044
C. 4.4
D. 44 - The terminal velocity of a particle moving through a fluid varies as dp n. The value of n is equal to _______________ in Stoke’s law regime?
A. 1
B. 0.5
C. 2
D. 1.5 - The terminal velocity of a particle moving through a fluid varies as dp n. What is the value of n’ for Newton’s law regime ?
A. 0.5
B. 1
C. 1.5
D. 3 - What is the force required (in Newtons) to hold a spherical balloon stationary in water at a depth of H from the air-water interface? The balloon is of radius 0.1 m and is filled with air ?
A. 4πg/3
B. 0.01 πgH/4
C. 0.01 πgH/8
D. 0.04 πgH/3 - A particle A of diameter 10 microns settles in an oil of specific gravity 0.9 and viscosity 10 poise under Stoke’s law. A particle B with diameter 20 microns settling in the same oil will have a settling velocity ?
A. Same as that of A
B. One fourth as that of A
C. Twice as that of A
D. Four times as that of A - Drag co-efficient for motion of spherical particles in a stationary fluid in the stoke’s law range is_________________?
A. 24/NRe,P
B. 16/NRe,P
C. 64/NRe,P
D. 48/NRe,P - The ratio of the wall drag to the form drag in the Stoke’s law range (for motion of spherical particles in a stationary fluid) is__________________?
A. 0.5
B. 1
C. 2
D. 0.33 - A bed of spherical particles (specific gravity 2.5) of uniform size 1500 μm is 0.5 m in diameter and 0.5 m high. In packed bed state, the porosity may be taken as 0.4. Ergun’s equation for the above fluid-particle system (in SI units) is given below : Δ P/L = 375 × 103 VOM + 10.94 × 106 V2 OM (SI units) If water is to be used as the fluidising medium, the minimum fluidisation velocity, VOM is_________________?
A. 12 mm/s
B. 16 mm/s
C. 24 mm/s
D. 28 mm/s