A. 1
B. 0.5
C. 2
D. 1.5
Related Mcqs:
- The terminal velocity of a particle moving through a fluid varies as dp n. What is the value of n’ for Newton’s law regime ?
A. 0.5
B. 1
C. 1.5
D. 3 - In Newton’s law range, the terminal velocity of a solid spherical particle falling through a stationary fluid mass varies as the ______________ of its diameter?
A. Inverse
B. Square root
C. Second power
D. First power - In the Newton’s law range, the terminal velocity of a solid spherical particle falling through a stationary fluid mass is ______________ the fluid viscosity?
A. Directly proportional to
B. Inversely proportional to
C. Inversely proportional to the square root of
D. Independent of - Bernoulli’s equation for fluid flow is derived following certain assumptions. Out of the assumptions listed below, which set of assumptions is used in derivation of Bernoulli’s equation? A. Fluid flow is frictionless & irrotational. B. Fluid flow is steady. C. Fluid flow is uniform & turbulent. D. Fluid is compressible. E. Fluid is incompressible ?
A. A, C, D
B. B, D, E
C. A, B, E
D. A, D, E - The terminal velocity of a solid spherical particle falling through a stationary fluid mass in the Stoke’s law range is proportional to the_____________________?
A. Inverse of fluid viscosity
B. Square of particle size
C. Difference in the densities of the particle & fluid
D. All A., B. and C. - The terminal velocity of a small sphere settling in a viscous fluid varies as the___________________?
A. First power of its diameter
B. Inverse of the fluid viscosity
C. Inverse square of the diameter
D. Square of the difference in specific weights of solid & fluid - In case of turbulent flow of a Newtonian fluid in a straight pipe, the maximum velocity is equal to (where, Vavg = average fluid velocity)?
A. Vavg
B. 1.2 Vavg
C. 1.5 Vavg
D. 1.8 Vavg - A particle A of diameter 10 microns settles in an oil of specific gravity 0.9 and viscosity 10 poise under Stoke’s law. A particle B with diameter 20 microns settling in the same oil will have a settling velocity ?
A. Same as that of A
B. One fourth as that of A
C. Twice as that of A
D. Four times as that of A - The fluid velocity varies as the square root of the cylindrical pipe diameter in case of steady state laminar flow at constant pressure drop of _____________ fluid?
A. Dilatent
B. Pseudo-plastic
C. Bingham plastic
D. Newtonian - The fluid velocity varies as the square of the cylindrical pipe diameter, in case of steady state laminar flow at constant pressure drop, for ______________ fluid?
A. Newtonian
B. Dilatant
C. Pseudo-plasticD. Non-Newtonian