A. Time
B. Useful volume of the tank
C. Diameter of the reactor
D. None of these
Related Mcqs:
- Second order consecutive irreversible reaction as shown in the bellow figure, were carried out in a constant volume isothermal batch reactor with different initial feed compositions. Reactor temperature was same in all the cases. In experiments where the ratio of concentration of B to that of A in the initial feed was less than 0.5, the concentration of B increased first, reached a maximum and then declined with time. However, for all experiments where this concentration ratio was 0.5 or above, concentration of B decreased monotonically with time right from the beginning. What is the ratio of the two rate constants (k1/k2) ?
A. 1/4
B. 1/2
C. 2
D. 4 - The reaction A → B is conducted in an adiabatic plug flow reactor (PFR). Pure A at a concentration of 2 kmol/m3is fed to the reactor at the rate of 0.01 m3 /s and at a temperature of 500 K. If the exit conversion is 20%, then the exit temperature (in k) is (Data: Heat of reaction at 298 K = – 50000 kJ/ kmole of A reacted Heat capacities CPA = CPB = 100kJ/kmole. K (may be assumed to be independent of temperature)) ?
A. 400
B. 500
C. 600
D. 1000 - The following gas phase reaction is taking place in a plug flow reactor. A stoichiometric mixture of A and B at 300 K is fed to the reactor. At 1 m along the length of the reactor, the temperature is 360 K. The pressure drop is negligible and an ideal gas behaviour can be assumed. Identify the correct expression relating the concentration of A at the inlet (CA0), concentration of A at 1m (CA) and the corresponding conversion of A (X) ?
A. CA = 1.2 CA0 (1 – X)/(1 – 0.33X)
B. CA = 1.2 CA0 (1 – X)/(1 – 0.5X)
C. CA = 0.83 CA0 (1 – X)/(1 – 0.33X)
D. CA = 0.83 CA0 (1 – X)/(1 – 0.5X) - For a tubular flow reactor with uniform concentration and temperature, the independent variable is___________________?
A. Time
B. Length
C. Diameter
D. None of these - An irreversible aqueous phase reaction, A + B → P, is carried out in an adiabatic mixed flow reactor. A feed containing 4kmole/m3 of each A and B enters the reactor at 8m3 /hr. If the temperature of the exit stream is never to exceed 390 K, what is the maximum inlet feed temperature allowed? Data: Heat of reaction = – 50 kJ/mole Density of the reacting mixture = 1000kg/m3 Specific heat of reacting mixture = 2kJ/kg.K The above data can be assumed to be independent of temperature and composition?
A. 190
B. 290
C. 390
D. 490 - A second order liquid phase reaction, A → B, is carried out in a mixed flow reactor operated in semi batch mode (no exit stream). The reactant A at concentration CAF is fed to the reactor at a volumetric flow rate of F. The volume of the reacting mixture is V and the density of the liquid mixture is constant. The mass balance for A is_______________________?
A. d(VCA)/dt = -F (CAF – CA) – kCA2V
B. d(VCA)/dt = F (CAF – CA) – kCA2V
C. d(VCA)/dt = -FCA – kCA2V
D. d(VCA)/dt = FCAF – kCA2V - A batch adiabatic reactor at an initial temperature of 373°K is being used for the reaction, A → B. Assume the heat of reaction is – 1kJ/mole at 373°K and heat capacity of both A and B to be constant and equal to 50J/mole.K. The temperature rise after a conversion of 0.5 will be ____________?
A. 5°C
B. 10°C
C. 20°C
D. 100°C - For an isothermal variable volume batch reactor, the following relation is applicable for a first order irreversible reaction?
A. XA = k . t
B. [CA0/(1 + εA XA)] (dXA/dt) = k
C. -ln(1 – XA) = kt
D. εA . ln (1 – XA) = k . t - A CSTR is to be designed in which an exothermic liquid phase first order reaction of the type, A → R, is taking place. The reactor is to be provided with a jacket in which coolant is flowing. Following data is given: CA0= 5 kmole/m3; XA = 0.5; Feed temperature = reactor temperature = 40°C. Rate constant at 40°C = 1 min-1; (ΔH) = – 40kJ/mole; ρ = 1000kg/m3 CP = 4 J/gm.°C ; q = 10-3 m3/min (ρ and CP are same for the reactant and product streams). The amount of heat to be removed is_________________?
A. 2/3 kW
B. 1 kW
C. 5/3 kW
D. 4 kW - An exothermic reaction takes place in an adiabatic reactor. The product temperature ______________ reactor feed temperature?
A. Is always equal to
B. Is always greater than
C. Is always less than
D. May be greater or less than