A. XA = k . t
B. [CA0/(1 + εA XA)] (dXA/dt) = k
C. -ln(1 – XA) = kt
D. εA . ln (1 – XA) = k . t
Related Mcqs:
- Second order consecutive irreversible reaction as shown in the bellow figure, were carried out in a constant volume isothermal batch reactor with different initial feed compositions. Reactor temperature was same in all the cases. In experiments where the ratio of concentration of B to that of A in the initial feed was less than 0.5, the concentration of B increased first, reached a maximum and then declined with time. However, for all experiments where this concentration ratio was 0.5 or above, concentration of B decreased monotonically with time right from the beginning. What is the ratio of the two rate constants (k1/k2) ?
A. 1/4
B. 1/2
C. 2
D. 4 - A first order irreversible reaction, A → B is carried out separately in a constant volume as well as in a variable volume reactor for a particular period. It signifies that _____________ in the two reactors?
A. Both conversion as well as concentration are same
B. Conversion in both will be the same but concentrations will be different
C. Both the conversion as well as concentrations will be different
D. None of these - The reaction A → B is conducted in an isothermal batch reactor. If the conversion of A increases linearly with holding time, then the order of the reaction is __________________?
A. 0
B. 1
C. 1.5
D. 2 - Rate constant for a first order reaction does not depend upon reaction time, extent of reaction and the initial concentration of reactants; but it is a function of reaction temperature. In a chemical reaction, the time required to reduce the concentration of reactant from 100 gm moles/litre to 50 gm moles/litre is same as that required to reduce it from 2 gm moles/litre to 1 gm mole/litre in the same volume. Then the order of this reaction is ?
A. 0
B. 1
C. 2
D. 3 - A liquid phase reaction is to be carried out under isothermal conditions. The reaction rate as a function of conversion has been determined experimentally and is shown in the figure given below. What choice of reactor or combination of reactors will require the minimum overall reactor volume, if a conversion of 0.9 is desired ?
A. CSTR followed by a PFR
B. PFR followed by a CSTR
C. CSTR followed by a PFR followed by a CSTR
D. PFR followed by a CSTR followed by a PFR - A second order liquid phase reaction, A → B, is carried out in a mixed flow reactor operated in semi batch mode (no exit stream). The reactant A at concentration CAF is fed to the reactor at a volumetric flow rate of F. The volume of the reacting mixture is V and the density of the liquid mixture is constant. The mass balance for A is_______________________?
A. d(VCA)/dt = -F (CAF – CA) – kCA2V
B. d(VCA)/dt = F (CAF – CA) – kCA2V
C. d(VCA)/dt = -FCA – kCA2V
D. d(VCA)/dt = FCAF – kCA2V - With increase in the order of reaction (for all positive reaction orders), the ratio of the volume of mixed reactor to the volume of plug flow reactor (for identical feed composition, flow rate and conversion)?
A. Increases
B. Decreases
C. Remain same
D. Increases linearly - The conversion for a second order, irreversible reaction (constant volume) as shown in the bellow figure, in batch mode is given by______________?
A. 1/(1 + k2 . CA0 . t)
B. (k2 . CA0 . t)/ (1 + k2 . CA0 . t)
C. (k2 . CA0 . t)2/ (1 + k2 . CA0 . t)
D. (k2 . CA0 . t)/ (1 + k2 . CA0 . t)2 - The gas phase reaction 2A ⇌ B is carried out in an isothermal plug flow reactor. The feed consists of 80 mole % A and 20 mole % inerts. If the conversion of A at the reactor exit is 50%, then CA/CA0 at the outlet of the reactor is _______________________?
A. 2/3
B. 5/8
C. 1/3
D. 3/8 - In case of the irreversible unimolecular type, first order reaction, the fractional conversion at any time for constant volume system as compared to variable volume system is___________________?
A. More
B. Less
C. Same
D. Either A. or B., depends on other factors