A. 7
B. 6
C. 3
D. 7/3
Related Mcqs:
- Pure ethanol vapor is fed to a reactor packed with alumina catalyst, at the rate of 100 kmole / hr. The reactor products comprise: ethylene: 95 kmole / hr, water vapour: 97.5 k mole / hr and diethyl ether: 2.5 kmole/hr. The reactions occuring can be represented by: C2H5OH → C2H4 + H2O 2C2H5OH → C2H5 – O – C2H5 + H2O The percent conversion of ethanol in the reactor is________________?
A. 100
B. 97.5
C. 95
D. 2.5 - The reaction A → B is conducted in an adiabatic plug flow reactor (PFR). Pure A at a concentration of 2 kmol/m3is fed to the reactor at the rate of 0.01 m3 /s and at a temperature of 500 K. If the exit conversion is 20%, then the exit temperature (in k) is (Data: Heat of reaction at 298 K = – 50000 kJ/ kmole of A reacted Heat capacities CPA = CPB = 100kJ/kmole. K (may be assumed to be independent of temperature)) ?
A. 400
B. 500
C. 600
D. 1000 - A second order liquid phase reaction, A → B, is carried out in a mixed flow reactor operated in semi batch mode (no exit stream). The reactant A at concentration CAF is fed to the reactor at a volumetric flow rate of F. The volume of the reacting mixture is V and the density of the liquid mixture is constant. The mass balance for A is_______________________?
A. d(VCA)/dt = -F (CAF – CA) – kCA2V
B. d(VCA)/dt = F (CAF – CA) – kCA2V
C. d(VCA)/dt = -FCA – kCA2V
D. d(VCA)/dt = FCAF – kCA2V - Second order consecutive irreversible reaction as shown in the bellow figure, were carried out in a constant volume isothermal batch reactor with different initial feed compositions. Reactor temperature was same in all the cases. In experiments where the ratio of concentration of B to that of A in the initial feed was less than 0.5, the concentration of B increased first, reached a maximum and then declined with time. However, for all experiments where this concentration ratio was 0.5 or above, concentration of B decreased monotonically with time right from the beginning. What is the ratio of the two rate constants (k1/k2) ?
A. 1/4
B. 1/2
C. 2
D. 4 - The following gas phase reaction is taking place in a plug flow reactor. A stoichiometric mixture of A and B at 300 K is fed to the reactor. At 1 m along the length of the reactor, the temperature is 360 K. The pressure drop is negligible and an ideal gas behaviour can be assumed. Identify the correct expression relating the concentration of A at the inlet (CA0), concentration of A at 1m (CA) and the corresponding conversion of A (X) ?
A. CA = 1.2 CA0 (1 – X)/(1 – 0.33X)
B. CA = 1.2 CA0 (1 – X)/(1 – 0.5X)
C. CA = 0.83 CA0 (1 – X)/(1 – 0.33X)
D. CA = 0.83 CA0 (1 – X)/(1 – 0.5X) - An irreversible aqueous phase reaction, A + B → P, is carried out in an adiabatic mixed flow reactor. A feed containing 4kmole/m3 of each A and B enters the reactor at 8m3 /hr. If the temperature of the exit stream is never to exceed 390 K, what is the maximum inlet feed temperature allowed? Data: Heat of reaction = – 50 kJ/mole Density of the reacting mixture = 1000kg/m3 Specific heat of reacting mixture = 2kJ/kg.K The above data can be assumed to be independent of temperature and composition?
A. 190
B. 290
C. 390
D. 490 - With increase in the order of reaction (for all positive reaction orders), the ratio of the volume of mixed reactor to the volume of plug flow reactor (for identical feed composition, flow rate and conversion)?
A. Increases
B. Decreases
C. Remain same
D. Increases linearly - A CSTR is to be designed in which an exothermic liquid phase first order reaction of the type, A → R, is taking place. The reactor is to be provided with a jacket in which coolant is flowing. Following data is given: CA0= 5 kmole/m3; XA = 0.5; Feed temperature = reactor temperature = 40°C. Rate constant at 40°C = 1 min-1; (ΔH) = – 40kJ/mole; ρ = 1000kg/m3 CP = 4 J/gm.°C ; q = 10-3 m3/min (ρ and CP are same for the reactant and product streams). The amount of heat to be removed is_________________?
A. 2/3 kW
B. 1 kW
C. 5/3 kW
D. 4 kW - The gas phase reaction 2A ⇌ B is carried out in an isothermal plug flow reactor. The feed consists of 80 mole % A and 20 mole % inerts. If the conversion of A at the reactor exit is 50%, then CA/CA0 at the outlet of the reactor is _______________________?
A. 2/3
B. 5/8
C. 1/3
D. 3/8 - In a chemical reaction, represented by as shown in the bellow figure, it is observed that the (i) Rate of reaction increases by a factor of 4 on doubling the concentration of the reactant. (ii) Rate of reaction increases by a factor of 9 on trebling the concentration of the reactant. Then the rate of the reaction is proportional to(where, CA = concentration of the reactant)_____________________?
A. CA
B. CA2
C. CA3
D. CA4