A. Laminar
B. Transition
C. Both A & B
D. Highly turbulent
Related Mcqs:
- For a laminar flow of fluid in a circular tube, ‘h1’ is the convective heat transfer co-efficient at velocity ‘V1’. If the velocity is reduced by half and assuming the fluid properties are constant, the new convective heat transfer co-efficient is________________?
A. 1.26 h1
B. 0.794 h1
C. 0.574 h1
D. 1.741 h1 - A fluid is flowing inside the inner tube of a double pipe heat exchanger with diameter ‘d’. For a fixed mass flow rate, the tube side heat transfer co-efficient for turbulent flow conditions is proportional to_____________________?
A. d0.8
B. d-0.2
C. d-1
D. d-1.8 - For turbulent flow in a tube, the heat transfer co-efficient is obtained from the Dittus- Boelter correlation. If the tube diameter is halved and the flow rate is doubled, then the heat transfer co-efficient will change by a factor of________________?
A. 1
B. 1.74
C. 6.1
D. 37 - The inside heat transfer co-efficient in case of turbulent flow of liquid in the tube side in a 1-2 shell and tube heat exchanger is increased by ______________ times, when the number of tube passes is increased to 8?
A. 20.8
B. 40.8
C. 40.4
D. 20.4 - Bulk of the convective heat transfer resistance from a hot tube surface to the fluid flowing in it, is __________________?
A. In the central core of the fluid
B. Uniformly distributed throughout the fluid
C. Mainly confined to a thin film of fluid near the surface
D. None of these - If average heat transfer co-efficient is ha and the local coefficient at the end of the plate is hl then in case of heat transfer to a fluid flowing over a flat plate, heated over its entire length________________?
A. ha = hl
B. ha = 2hl
C. ha = 0.5 hl
D. ha = 0.75 hl - Steam is to be condensed in a shell and tube heat exchanger, 5 m long with a shell diameter of 1 m. Cooling water is to be used for removing the heat. Heat transfer co-efficient for the cooling water, whether on shell side or tube side is the same. The best arrangement is_____________?
A. Vertical heat exchanger with steam on tube side
B. Vertical heat exchanger with steam on shell side
C. Horizontal heat exchanger with steam on tube side
D. Horizontal heat exchanger with steam on shell side - The overall heat transfer co-efficient for a shell and tube heat exchanger for clean surfaces is U0 = 400 W/m2.K. The fouling factor after one year of operation is found to be hd0 = 2000 W/m2.K. The overall heat transfer co-efficient at this time is _____________________?
A. 1200 W/m2.K
B. 894 W/m2.K
C. 333 W/m2.K
D. 287 W/m2.K - Air is to be heated by condensing steam. Two heat exchangers are available (i) a shell and tube heat exchanger and (ii) a finned tube heat exchanger. Tube side heat transfer area are equal in both the cases. The recommended arrangement is________________?
A. Finned tube heat exchanger with air inside and steam outside
B. Finned tube heat exchanger with air outside and steam inside
C. Shell and tube heat exchanger with air inside tubes and steam on shell side
D. Shell and tube heat exchanger with air on shell side and steam inside tubes - The Sieder-Tate correlation for heat transfer in turbulent flow in pipe gives Nu α Re0.8, where, Nu is the Nusselt number and Re is the Reynolds number for the flow. Assuming that this relation is valid, the heat transfer co-efficient varies with the pipe diameter D. as _________________?
A. D-1.8
B. D-0.2
C. D0.2
D. D1.8