A. Wetted wall
B. Packed
C. Plate
D. Spray
Related Mcqs:
- A solid is being dried in the linear drying rate regime from moisture content Xo to XF. The drying rate is zero at X = 0 and the critical moisture content is the same as the initial moisture Xo. The drying time for M = (Ls/ARc) is (where, L = total mass of dry solid, A = total surface area for drying Rc = Constant maximum drying rate per unit area X = moisture content (in mass of water/mass of dry solids)) ?
A. M(Xo – XF)
B. M(Xo/XF)
C. M ln(Xo/XF)
D. MXo ln(Xo/XF) - A solid is being dried in the linear drying rate regime from moisture content Xo to XF. The drying rate is zero at X = 0 and the critical moisture content is the same as the initial moisture Xo. The drying time for M = (Ls/ARc) is (where, L = total mass of dry solid, A = total surface area for drying Rc = Constant maximum drying rate per unit area X = moisture content (in mass of water/mass of dry solids))_____________?
A. M(Xo – XF)
B. M(Xo/XF)
C. M ln(Xo/XF)
D. MXo ln(Xo/XF) - Experiments were conducted to determine the flux of a species A in a stagnant medium across a gas-liquid interface. The overall mass transfer co-efficient based on the liquid side for dilute systems for the above was estimated to be 4 × 10-3 kg mole/m2.s. The equilibrium data for the system is given as y = 2x. The flux across the interface (in kg mole/m2 .s) for bulk concentrations of A in gas phase and liquid phase as y = 0.4 and x = 0.01 respectively is _________________________?
A. 5.6 × 10-4
B. 8.5 × 10-4
C. 5.6 × 10-3
D. 8.5 × 10-3 - According to the film theory of mass transfer, the mass transfer co-efficient is proportional to (where, D = molecular diffusivity) ?
A. D
B. D2
C. D0.5
D. 1/D - For experimental determination of mass transfer co-efficient by wetted wall tower, the mass transfer area is___________________?
A. Calculated
B. Unknown
C. Known
D. Not required - JD factor for mass transfer is a function of Reynolds number. Mass transfer by molecular diffusion from a single drop to surrounding still air is given by___________________?
A. Nsh = 2
B. Nst = 2
C. Nsc = 2
D. None of these - For the gas absorption, the height of a transfer unit, based on the gas phase is given by (G: superficial molar gas velocity, L: superficial molar liquid velocity, FG: mass transfer co-efficient, moles/m2, a: interfacial area per unit volume of tower) ?
A. G/(FG . a)
B. FG/(G . a)
C. (G . a)/FG
D. L/(FG . G) - In an interphase mass transfer process, the lesser the solubility of a given solute in a liquid, the higher are the chances that the transfer process will be_________________?
A. Liquid phase resistance-controlled
B. Gas phase resistance controlled
C. Impossible
D. Driven by a non-linear driving force - The Reynolds number of the liquid was increased 100 fold for a laminar falling film used for gas-liquid contacting. Assuming penetrating theory is applicable, the fold increase in the mass transfer co-efficient (Kc) for the same system is_______________________?
A. 100
B. 10
C. 5
D. 1 - Lewis number, which is important in problems involving simultaneous heat and mass transfer, is the ratio of__________________?
A. Mass diffusivity to momentum diffusivity
B. Thermal diffusivity to mass diffusivity
C. Momentum diffusivity to thermal diffusivity
D. None of these