A. Partially filled pipeline
B. Pipe
C. Open channel
D. River
Related Mcqs:
- Bernoulli’s equation for fluid flow is derived following certain assumptions. Out of the assumptions listed below, which set of assumptions is used in derivation of Bernoulli’s equation? A. Fluid flow is frictionless & irrotational. B. Fluid flow is steady. C. Fluid flow is uniform & turbulent. D. Fluid is compressible. E. Fluid is incompressible ?
A. A, C, D
B. B, D, E
C. A, B, E
D. A, D, E - The pressure drop per unit length of pipe incurred by a fluid ‘X’ flowing through pipe is Δp. If another fluid ‘Y’ having both the specific gravity & density just double of that of fluid ‘X’, flows through the same pipe at the same flow rate/average velocity, then the pressure drop in this case will be__________________?
A. Δp
B. 2Δp
C. Δp2
D. Δp/2 - In which type of fluid flow, the velocity of flow of fluid changes from point to point in the fluid at any instant ?
A. Rotational
B. Unsteady
C. Turbulent
D. Non-uniform - In case of unsteady fluid flow, conditions & flow pattern change with the passage of time at a position in a flow situation. Which of the following is an example of unsteady flow ?
A. Discharge of water by a centrifugal pump being run at a constant rpm
B. Water flow in the suction and discharge pipe of a reciprocating pump
C. Water discharge from a vertical vessel in which constant level is maintained
D. Low velocity flow of a highly viscous liquid through a hydraulically smooth pipe - The fluid velocity varies as the square of the cylindrical pipe diameter, in case of steady state laminar flow at constant pressure drop, for ______________ fluid?
A. Newtonian
B. Dilatant
C. Pseudo-plasticD. Non-Newtonian
- Applying a pressure drop across a capillary results in a volumetric flow rate ‘Q’ under laminar flow conditions. The flow rate for the same pressure drop, in a capillary of the same length but half the radius is____________________?
A. Q/2
B. Q/4
C. Q/8
D. Q/16 - The fluid velocity varies as the square root of the cylindrical pipe diameter in case of steady state laminar flow at constant pressure drop of _____________ fluid?
A. Dilatent
B. Pseudo-plastic
C. Bingham plastic
D. Newtonian - The fluid velocity varies as the cube of the cylindrical pipe diameter in case of steady state laminar flow at constant pressure drop for ____________ fluid?
A. Newtonian
B. Pseudo-plastic
C. Dilatent
D. Bingham plastic - For laminar flow of Newtonian fluids through a circular pipe, for a given pressure drop and length & diameter of pipe, the velocity of fluid is proportional to (where, μ = fluid viscosity ) ?
A. μ
B. 1/μ
C. √μ
D. 1/√μ - In a fully turbulent flow (Re > 105) in a pipe of diameter ‘d’, for a constant pressure gradient, the dependence of volumetric flow rate of an incompressible fluid is_______________?
A. d
B. d2
C. d2.5
D. d4