A. Motion
B. Pressure & temperature
C. Shearing stress
D. Both B. & C.
Related Mcqs:
- Bernoulli’s equation for fluid flow is derived following certain assumptions. Out of the assumptions listed below, which set of assumptions is used in derivation of Bernoulli’s equation? A. Fluid flow is frictionless & irrotational. B. Fluid flow is steady. C. Fluid flow is uniform & turbulent. D. Fluid is compressible. E. Fluid is incompressible ?
A. A, C, D
B. B, D, E
C. A, B, E
D. A, D, E - As per Newton’s law of viscosity, the shear stress for a given rate of angular deformation of fluid is proportional to (where, μ = fluid viscosity) ?
A. 1/μ
B. μ
C. μ2
D. 1/μ2 - Which of the following must be followed by the flow of a fluid (real or ideal)? (I) Newton’s law of viscosity. (II) Newton’s second law of motion. (III) The continuity equation. (IV) Velocity of boundary layer must be zero relative to boundary. (V) Fluid cannot penetrate a boundary?
A. I, II, III
B. II, III, V
C. I, II, V
D. II, IV, V - For laminar flow of Newtonian fluids through a circular pipe, for a given pressure drop and length & diameter of pipe, the velocity of fluid is proportional to (where, μ = fluid viscosity ) ?
A. μ
B. 1/μ
C. √μ
D. 1/√μ - A fluid whose apparent viscosity increases with shear rate is termed as the _____________ fluid?
A. Newtonian
B. Viscous
C. Dilatant
D. Non-viscous - In the Newton’s law range, the terminal velocity of a solid spherical particle falling through a stationary fluid mass is ______________ the fluid viscosity?
A. Directly proportional to
B. Inversely proportional to
C. Inversely proportional to the square root of
D. Independent of - The pressure drop per unit length of pipe incurred by a fluid ‘X’ flowing through pipe is Δp. If another fluid ‘Y’ having both the specific gravity & density just double of that of fluid ‘X’, flows through the same pipe at the same flow rate/average velocity, then the pressure drop in this case will be__________________?
A. Δp
B. 2Δp
C. Δp2
D. Δp/2 - In which type of fluid flow, the velocity of flow of fluid changes from point to point in the fluid at any instant ?
A. Rotational
B. Unsteady
C. Turbulent
D. Non-uniform - A gas (density = 1.5 kg/m3, viscosity = 2 × 10‒5 kg/m.s) flowing through a packed bed (particle size = 0.5 cm, porosity = 0.5) at a superficial velocity of 2 m/s causes a pressure drop of 8400 Pa/m. The pressure drop for another gas, with density of 1.5 kg/m3and viscosity of 3 × 10‒5kg/m.s flowing at 3 m/s will be________________?
A. 8400 Pa/m
B. 12600 Pa/m
C. 18900 Pa/m
D. 16800 Pa/m - Dimension of absolute viscosity is_________________?
A. ML-1T-1
B. MLT-1
C. ML-1T
D. MLT