A. Temperature should be high in the beginning and decreased towards the end of the reaction
B. Very low temperature should be used throughout the reaction
C. Very high temperature should be used throughout the reaction
D. None of these
Related Mcqs:
- The following gas phase reaction is taking place in a plug flow reactor. A stoichiometric mixture of A and B at 300 K is fed to the reactor. At 1 m along the length of the reactor, the temperature is 360 K. The pressure drop is negligible and an ideal gas behaviour can be assumed. Identify the correct expression relating the concentration of A at the inlet (CA0), concentration of A at 1m (CA) and the corresponding conversion of A (X) ?
A. CA = 1.2 CA0 (1 – X)/(1 – 0.33X)
B. CA = 1.2 CA0 (1 – X)/(1 – 0.5X)
C. CA = 0.83 CA0 (1 – X)/(1 – 0.33X)
D. CA = 0.83 CA0 (1 – X)/(1 – 0.5X) - A reversible liquid phase endothermic reaction is to be carried out in a plug flow reactor. For minimum reactor volume, it should be operated such that the temperature along the length ?
A. Decreases
B. Increases
C. Is at the highest allowable temperature throughout
D. First increases and then decreases - With increase in the order of reaction (for all positive reaction orders), the ratio of the volume of mixed reactor to the volume of plug flow reactor (for identical feed composition, flow rate and conversion)?
A. Increases
B. Decreases
C. Remain same
D. Increases linearly - The gas phase reaction 2A ⇌ B is carried out in an isothermal plug flow reactor. The feed consists of 80 mole % A and 20 mole % inerts. If the conversion of A at the reactor exit is 50%, then CA/CA0 at the outlet of the reactor is _______________________?
A. 2/3
B. 5/8
C. 1/3
D. 3/8 - A CSTR is to be designed in which an exothermic liquid phase first order reaction of the type, A → R, is taking place. The reactor is to be provided with a jacket in which coolant is flowing. Following data is given: CA0= 5 kmole/m3; XA = 0.5; Feed temperature = reactor temperature = 40°C. Rate constant at 40°C = 1 min-1; (ΔH) = – 40kJ/mole; ρ = 1000kg/m3 CP = 4 J/gm.°C ; q = 10-3 m3/min (ρ and CP are same for the reactant and product streams). The amount of heat to be removed is_________________?
A. 2/3 kW
B. 1 kW
C. 5/3 kW
D. 4 kW - The reaction A → B is conducted in an adiabatic plug flow reactor (PFR). Pure A at a concentration of 2 kmol/m3is fed to the reactor at the rate of 0.01 m3 /s and at a temperature of 500 K. If the exit conversion is 20%, then the exit temperature (in k) is (Data: Heat of reaction at 298 K = – 50000 kJ/ kmole of A reacted Heat capacities CPA = CPB = 100kJ/kmole. K (may be assumed to be independent of temperature)) ?
A. 400
B. 500
C. 600
D. 1000 - ‘N’ plug flow reactors in series with a total volume ‘V’ gives the same conversion as a single plug flow reactor of volume ‘V’ for _______________ order reactions?
A. First
B. Second
C. Third
D. Any - An isothermal aqueous phase reversible reaction, P ⇌ R, is to be carried out in a mixed flow reactor. The reaction rate in k.mole/m3 .h is given by, r = 0.5CP – 0.125CR. A stream containing only P enters the reactor. The residence time required (in hours) for 40% conversion of P is_________________?
A. 0.80
B. 1.33
C. 1.60
D. 2.67 - The size of plug flow reactor (PFR) for all positive reaction orders and for any given duty, is _____________________ that of mixed reactor?
A. Greater than
B. Equal to
C. Smaller than
D. Unpredictable from the data - An endothermic aqueous phase first order irreversible reaction is carried out in an adiabatic plug flow reactor. The rate of reaction ?
A. Is maximum at the inlet of the reactor
B. Goes through a maximum along the length of the reactor
C. Goes through a minimum along the length of the reactor
D. Is maximum at the exit of the reactor