A. Reactor dispersion number (D/vL)
B. Reduced time (vt/V)
C. Thiele modulus L √(k/D1)
D. None of these
Related Mcqs:
- A pollutant P degrades according to first order kinetics. An aqueous stream containing P at 2 kmole/m3 and volumetric flow rate 1m3 /h requires a mixed flow reactor of volume V to bring down the pollutant level to 0.5 kmole/m3. The inlet concentration of the pollutant is now doubled and the volumetric flow rate is tripled. If the pollutant level is to be brought down to the same level of 0.5 k.mole/m3, the volume of the mixed flow reactor should be increased by a factor of_______________?
A. 7
B. 6
C. 3
D. 7/3 - A second order liquid phase reaction, A → B, is carried out in a mixed flow reactor operated in semi batch mode (no exit stream). The reactant A at concentration CAF is fed to the reactor at a volumetric flow rate of F. The volume of the reacting mixture is V and the density of the liquid mixture is constant. The mass balance for A is_______________________?
A. d(VCA)/dt = -F (CAF – CA) – kCA2V
B. d(VCA)/dt = F (CAF – CA) – kCA2V
C. d(VCA)/dt = -FCA – kCA2V
D. d(VCA)/dt = FCAF – kCA2V - The effectiveness factor for large value of Thiele modulus [L√(K/D1)] of a solid catalysed first order reaction is equal to (where, L = length of the reactor, cm, D1 = diffusion co-efficient, cm2/second) ?
A. L √(K/D1)
B. 1/[L√(K/D1)]
C. 1
D. ∞ - With increase in the order of reaction (for all positive reaction orders), the ratio of the volume of mixed reactor to the volume of plug flow reactor (for identical feed composition, flow rate and conversion)?
A. Increases
B. Decreases
C. Remain same
D. Increases linearly - The following gas phase reaction is taking place in a plug flow reactor. A stoichiometric mixture of A and B at 300 K is fed to the reactor. At 1 m along the length of the reactor, the temperature is 360 K. The pressure drop is negligible and an ideal gas behaviour can be assumed. Identify the correct expression relating the concentration of A at the inlet (CA0), concentration of A at 1m (CA) and the corresponding conversion of A (X) ?
A. CA = 1.2 CA0 (1 – X)/(1 – 0.33X)
B. CA = 1.2 CA0 (1 – X)/(1 – 0.5X)
C. CA = 0.83 CA0 (1 – X)/(1 – 0.33X)
D. CA = 0.83 CA0 (1 – X)/(1 – 0.5X) - For identical flow rate, feed composition and for elementary first order reactions, ‘N’ equal sized mixed reactors in series with a total volume ‘V’ gives the same conversion as a single plug flow reactor of volume ‘V’ for constant density systems. This is true, when the value of ‘N’ is ___________________?
A. 1
B. > 1
C. ∞
D. ≥ 1 - A reversible liquid phase endothermic reaction is to be carried out in a plug flow reactor. For minimum reactor volume, it should be operated such that the temperature along the length ?
A. Decreases
B. Increases
C. Is at the highest allowable temperature throughout
D. First increases and then decreases - Second order consecutive irreversible reaction as shown in the bellow figure, were carried out in a constant volume isothermal batch reactor with different initial feed compositions. Reactor temperature was same in all the cases. In experiments where the ratio of concentration of B to that of A in the initial feed was less than 0.5, the concentration of B increased first, reached a maximum and then declined with time. However, for all experiments where this concentration ratio was 0.5 or above, concentration of B decreased monotonically with time right from the beginning. What is the ratio of the two rate constants (k1/k2) ?
A. 1/4
B. 1/2
C. 2
D. 4 - For a gaseous phase reaction, rate of reaction is equal to K. CA . CB. If the volume of the reactor is suddenly reduced to 1/4th of its initial volume, then the rate of reaction compared to the original rate will be ______________ times?
A. 8
B. 16
C. 1/8
D. 1/16 - ‘N’ plug flow reactors in series with a total volume ‘V’ gives the same conversion as a single plug flow reactor of volume ‘V’ for _______________ order reactions?
A. First
B. Second
C. Third
D. Any