A. 0
B. 1
C. 1.5
D. 2
Related Mcqs:
- A liquid phase reaction is to be carried out under isothermal conditions. The reaction rate as a function of conversion has been determined experimentally and is shown in the figure given below. What choice of reactor or combination of reactors will require the minimum overall reactor volume, if a conversion of 0.9 is desired ?
A. CSTR followed by a PFR
B. PFR followed by a CSTR
C. CSTR followed by a PFR followed by a CSTR
D. PFR followed by a CSTR followed by a PFR - Second order consecutive irreversible reaction as shown in the bellow figure, were carried out in a constant volume isothermal batch reactor with different initial feed compositions. Reactor temperature was same in all the cases. In experiments where the ratio of concentration of B to that of A in the initial feed was less than 0.5, the concentration of B increased first, reached a maximum and then declined with time. However, for all experiments where this concentration ratio was 0.5 or above, concentration of B decreased monotonically with time right from the beginning. What is the ratio of the two rate constants (k1/k2) ?
A. 1/4
B. 1/2
C. 2
D. 4 - The gas phase reaction 2A ⇌ B is carried out in an isothermal plug flow reactor. The feed consists of 80 mole % A and 20 mole % inerts. If the conversion of A at the reactor exit is 50%, then CA/CA0 at the outlet of the reactor is _______________________?
A. 2/3
B. 5/8
C. 1/3
D. 3/8 - An isothermal aqueous phase reversible reaction, P ⇌ R, is to be carried out in a mixed flow reactor. The reaction rate in k.mole/m3 .h is given by, r = 0.5CP – 0.125CR. A stream containing only P enters the reactor. The residence time required (in hours) for 40% conversion of P is_________________?
A. 0.80
B. 1.33
C. 1.60
D. 2.67 - The first order series reaction as shown in the bellow figure is conducted in a batch reactor. The initial concentrations of A, B and C (CA0, CB0, CC0 respectively) are all non-zero. The variation of CB with reaction time will not show a maximum, if___________________?
A. k2 CB0 > k1 CA0
B. k CA0 > k2.CB0
C. CB0 > CA0
D. CA0 > CB0 - The reaction A → B is conducted in an adiabatic plug flow reactor (PFR). Pure A at a concentration of 2 kmol/m3is fed to the reactor at the rate of 0.01 m3 /s and at a temperature of 500 K. If the exit conversion is 20%, then the exit temperature (in k) is (Data: Heat of reaction at 298 K = – 50000 kJ/ kmole of A reacted Heat capacities CPA = CPB = 100kJ/kmole. K (may be assumed to be independent of temperature)) ?
A. 400
B. 500
C. 600
D. 1000 - For an isothermal variable volume batch reactor, the following relation is applicable for a first order irreversible reaction?
A. XA = k . t
B. [CA0/(1 + εA XA)] (dXA/dt) = k
C. -ln(1 – XA) = kt
D. εA . ln (1 – XA) = k . t - Rate constant for a first order reaction does not depend upon reaction time, extent of reaction and the initial concentration of reactants; but it is a function of reaction temperature. In a chemical reaction, the time required to reduce the concentration of reactant from 100 gm moles/litre to 50 gm moles/litre is same as that required to reduce it from 2 gm moles/litre to 1 gm mole/litre in the same volume. Then the order of this reaction is ?
A. 0
B. 1
C. 2
D. 3 - A batch adiabatic reactor at an initial temperature of 373°K is being used for the reaction, A → B. Assume the heat of reaction is – 1kJ/mole at 373°K and heat capacity of both A and B to be constant and equal to 50J/mole.K. The temperature rise after a conversion of 0.5 will be ____________?
A. 5°C
B. 10°C
C. 20°C
D. 100°C - The first order gas phase reaction as shown in the bellow figure is conducted isothermally in batch mode. The rate of change of conversion with time is given by________________?
A. dXA/dt = k1 (1 – XA)2 (1 + 2XA)
B. dXA/dt = k1 (1 – XA) (1 + 0.5XA)
C. dXA/dt = k1 (1 – XA)
D. dXA/dt = k1 (1 – XA)/(1 + XA)