A. V/n
B. V
C. V.n
D. 1/V
Related Mcqs:
- ‘N’ plug flow reactors in series with a total volume ‘V’ gives the same conversion as a single plug flow reactor of volume ‘V’ for _______________ order reactions?
A. First
B. Second
C. Third
D. Any - For identical flow rate, feed composition and for elementary first order reactions, ‘N’ equal sized mixed reactors in series with a total volume ‘V’ gives the same conversion as a single plug flow reactor of volume ‘V’ for constant density systems. This is true, when the value of ‘N’ is ___________________?
A. 1
B. > 1
C. ∞
D. ≥ 1 - For identical flow rate and feed composition, X plug flow reactors (PER) in series with a total volume V gives the same conversion as single_______________?
A. CSTR of volume V
B. PFR of volume V
C. CSTR of volume V/X
D. PFR of volume V/X - A first order reaction is to be treated in a series of two mixed reactors. The total volume of the two reactors is minimum, when the reactors are_____________________?
A. Equal in size
B. Of different sizes
C. Of such size that the ratio of their volumes is < 5
D. None of these - With increase in the order of reaction (for all positive reaction orders), the ratio of the volume of mixed reactor to the volume of plug flow reactor (for identical feed composition, flow rate and conversion)?
A. Increases
B. Decreases
C. Remain same
D. Increases linearly - Three plug flow reactors (PFR’s) of 4, 5 & 6 m3 volumes are arranged in two branches as shown below in the figure. If the total feed rate is 300 tons/hr, then for the same conversion in each branch, the feed rate through branch II should be ______________ tons/hr ?
A. 100
B. 150
C. 200
D. 225 - A liquid phase reaction is to be carried out under isothermal conditions. The reaction rate as a function of conversion has been determined experimentally and is shown in the figure given below. What choice of reactor or combination of reactors will require the minimum overall reactor volume, if a conversion of 0.9 is desired ?
A. CSTR followed by a PFR
B. PFR followed by a CSTR
C. CSTR followed by a PFR followed by a CSTR
D. PFR followed by a CSTR followed by a PFR - A pollutant P degrades according to first order kinetics. An aqueous stream containing P at 2 kmole/m3 and volumetric flow rate 1m3 /h requires a mixed flow reactor of volume V to bring down the pollutant level to 0.5 kmole/m3. The inlet concentration of the pollutant is now doubled and the volumetric flow rate is tripled. If the pollutant level is to be brought down to the same level of 0.5 k.mole/m3, the volume of the mixed flow reactor should be increased by a factor of_______________?
A. 7
B. 6
C. 3
D. 7/3 - The conversion for a first order liquid phase reaction. A → B in a CSTR is 50%. If another CSTR of the same volume is connected in series, then the % conversion at the exit of the second reactor will be_____________________?
A. 60
B. 75
C. 90
D. 100 - The gas phase reaction 2A ⇌ B is carried out in an isothermal plug flow reactor. The feed consists of 80 mole % A and 20 mole % inerts. If the conversion of A at the reactor exit is 50%, then CA/CA0 at the outlet of the reactor is _______________________?
A. 2/3
B. 5/8
C. 1/3
D. 3/8