A. exp (-E/RT)
B. exp (-E/2RT)
C. √T
D. Tm exp (-E/RT)
Related Mcqs:
- Rate constant for a first order reaction does not depend upon reaction time, extent of reaction and the initial concentration of reactants; but it is a function of reaction temperature. In a chemical reaction, the time required to reduce the concentration of reactant from 100 gm moles/litre to 50 gm moles/litre is same as that required to reduce it from 2 gm moles/litre to 1 gm mole/litre in the same volume. Then the order of this reaction is ?
A. 0
B. 1
C. 2
D. 3 - In a chemical reaction, represented by as shown in the bellow figure, it is observed that the (i) Rate of reaction increases by a factor of 4 on doubling the concentration of the reactant. (ii) Rate of reaction increases by a factor of 9 on trebling the concentration of the reactant. Then the rate of the reaction is proportional to(where, CA = concentration of the reactant)_____________________?
A. CA
B. CA2
C. CA3
D. CA4 - The rate controlling step for the heterogeneous irreversible catalytic reaction A(g) + B(g) → C(g) is the surface reaction of absorbed A with absorbed B to give adsorbed C. The rate expression for this reaction can then be written as (where, KA, KB and KC are the equilibrium constants and is the rate constant of the rate controlling step) ?
A. k KA pApB / (1 + KApA + KBpB)
B. k KAKB pApB / (1 + KApA + KBpB)
C. k KAKB pApB / (1 + KApA + KBpB + KCpC)
D. k KAKB pApB / (1 + KApA + KBpB + KCpC)2 - For the chemical reaction P → Q, it is found that the rate of reaction doubles as the concentration of ‘P’ is doubled. If the reaction rate is proportional to Cp n, then what is the value of ‘n’ for this chemical reaction ?
A. 0
B. 1
C. 2
D. 3 - Collision theory gives the rate constant for bimolecular reaction as___________________?
A. K α √T.e-E/RT
B. K α eE/RT
C. K α e-E/RT
D. None of these - For a vapour phase catalytic reaction (A + B → P) which follows the Ridel mechanism and the reaction step is rate controlling, the rate of reaction is given by (reaction rate is irreversible, product also absorbs) ?
A. -rA = (k . PA . PB)/(1 + KAPA + KPPP)
B. -rA = (k . PA
2 – k1PP)/(1 + KAPA + KPPP)
C. -rA = (k . PA . PB)/(1 + KAPB + KBPB . KPPP)
D. -rA = (k . PA . PB)/(1 + KAPA) - The rate of the chemical reaction A → B doubles as the concentration of A i.e.., CA is doubled. If rate of reaction is proportional to CA n, then what is the value of n for this reaction ?
A. 0
B. 0.5
C. 1
D. 2 - What is the value of ‘n’ if the reaction rate of the chemical reaction A → B, is proportional to CA n and it is found that the reaction rate triples, when the concentration of ‘A’ is increased 9 times ?
A. 1/2
B. 1/3
C. 1/9
D. 3 - For the chemical reaction X → Y, it is observed that, on doubling the concentration of ‘X’, the reaction rate quadruples. If the reaction rate is proportional to Cx n, then what is the value of „n‟ ?
A. 1/4
B. 2
C. 4
D. 16 - The rate expression for a heterogeneous catalytic reaction is given by, – rA = K.KA PA(1 + KA.PA + KR.PR), where K is surface reaction rate constant and KA and KR are absorption equilibrium constants of A and R respectively. If KR PR >> (1 + KA PA), the apparent activation energy EA is equal to (given E is the activation energy for the reaction and ΔHR and ΔHA are the activation energies of adsorption of R and A) ?
A. E
B. E + ΔHA
C. E + ΔHA – ΔHR)
D. ΔHA + ΔHR