A. Antoine
B. Kopp’s
C. Lee’s
D. Kistyakowsky
Related Mcqs:
- The variation of thermal conductivity of a metal with temperature is often correlated using an expression of the form K = K0 + at, where, K is the thermal conductivity and T is the temperature (in °K). The units of ‘a’ in SI system will be________________?
A. W/m.k
B. W/m
C. W/m.k2
D. None, ‘a’ is just a number - For gases, the thermal conductivity increases with temperature rise. For liquids, with increase in concentration, its thermal conductivity generally ?
A. Decreases
B. Increases
C. Remains unchanged
D. Increases exponentially - If the thermal conductivity of a wall material is independent of temperature, the steady state temperature distribution in the very large thin plane wall having steady, uniform surface temperature follows _____________ law?
A. Parabolic
B. Hyperbolic
C. Linear
D. Logarithmic - 200 kg of solids (on dry basis) is subjected to a drying process for a period of 5000 seconds. The drying occurs in the constant rate period with the drying rate as, Nc = 0.5 × 10-3 kg/m2.s. The initial moisture content of the solid is 0.2 kg moisture/kg dry solid. The interfacial area available for drying is 4 m2/1000 kg of dry solid. The moisture content at the end of the drying period is (in kg moisture/kg dry solid)?
A. 0.5
B. 0.05
C. 0.1
D. 0.15 - Walls of a cubical oven are of thickness l, and they are made of material of thermal conductivity k. The temperature inside the oven is 100°C and the inside heat transfer coefficient is „3k/l’. If the wall temperature on the outside is held at 25°C, what is the inside wall temperature in degree centigrade ?
A. 35.5
B. 43.75
C. 81.25
D. 48.25 - If the thermal conductivity of a wall material is independent of temperature, the steady state temperature distribution in the very large thin plane wall having steady, uniform surface temperature follows ____________ law?
A. Hyperbolic
B. Parabolic
C. Linear
D. Logarithmic - Three materials A, B and C of equal thickness and of thermal conductivity of 20, 40 & 60 kcal/hr. m. °C respectively are joined together. The temperature outside of A and C are 30°C and 100°C respectively. The interface between B and C will be at a temperature of ____________ °C?
A. 40
B. 95
C. 70
D. 50 - A wall has two layers of materials A and B; each made of a different material. Both the layers have the same thickness. The thermal conductivity of material A is twice that of B. Under the equilibrium, the temperature difference across the wall is 36°C. The temperature difference across the layer A is ______________ °C?
A. 6
B. 12
C. 18
D. 24 - A composite flat wall of a furnace is made of two materials ‘A’ and ‘B’. The thermal conductivity of ‘A’ is twice of that of material ‘B’, while the thickness of layer of ‘A’ is half that of B. If the temperature at the two sides of the wall are 400 and 1200°K, then the temperature drop (in °K) across the layer of material ‘A’ is________________?
A. 125
B. 133
C. 150
D. 160 - The heat flux (from outside to inside) across an insulating wall with thermal conductivity, K = 0.04 W/m.°K and thickness 0.16m is 10 W/m2. The temperature of the inside wall is – 5°C. The outside wall temperature is___________________?
A. 25°C
B. 30°C
C. 35°C
D. 40°C