A. 1/(1 + k2 . CA0 . t)
B. (k2 . CA0 . t)/ (1 + k2 . CA0 . t)
C. (k2 . CA0 . t)2/ (1 + k2 . CA0 . t)
D. (k2 . CA0 . t)/ (1 + k2 . CA0 . t)2
Related Mcqs:
- Second order consecutive irreversible reaction as shown in the bellow figure, were carried out in a constant volume isothermal batch reactor with different initial feed compositions. Reactor temperature was same in all the cases. In experiments where the ratio of concentration of B to that of A in the initial feed was less than 0.5, the concentration of B increased first, reached a maximum and then declined with time. However, for all experiments where this concentration ratio was 0.5 or above, concentration of B decreased monotonically with time right from the beginning. What is the ratio of the two rate constants (k1/k2) ?
A. 1/4
B. 1/2
C. 2
D. 4 - The first order gas phase reaction as shown in the bellow figure is conducted isothermally in batch mode. The rate of change of conversion with time is given by________________?
A. dXA/dt = k1 (1 – XA)2 (1 + 2XA)
B. dXA/dt = k1 (1 – XA) (1 + 0.5XA)
C. dXA/dt = k1 (1 – XA)
D. dXA/dt = k1 (1 – XA)/(1 + XA) - The first order series reaction as shown in the bellow figure is conducted in a batch reactor. The initial concentrations of A, B and C (CA0, CB0, CC0 respectively) are all non-zero. The variation of CB with reaction time will not show a maximum, if___________________?
A. k2 CB0 > k1 CA0
B. k CA0 > k2.CB0
C. CB0 > CA0
D. CA0 > CB0 - The rate equation for the reaction represented by as shown in the bellow figure, is given by – rx = K1 . Cx/(1 + K2 Cx). At high value of Cx (i.e.., K2Cx > > 1), the order of the reaction and the rate constant are respectively___________________?
A. Zero order & K1/K2
B. Zero order & K1
C. First order & K1
D. First order & K1/K2 - A liquid phase reaction is to be carried out under isothermal conditions. The reaction rate as a function of conversion has been determined experimentally and is shown in the figure given below. What choice of reactor or combination of reactors will require the minimum overall reactor volume, if a conversion of 0.9 is desired ?
A. CSTR followed by a PFR
B. PFR followed by a CSTR
C. CSTR followed by a PFR followed by a CSTR
D. PFR followed by a CSTR followed by a PFR - Rate constant for a first order reaction does not depend upon reaction time, extent of reaction and the initial concentration of reactants; but it is a function of reaction temperature. In a chemical reaction, the time required to reduce the concentration of reactant from 100 gm moles/litre to 50 gm moles/litre is same as that required to reduce it from 2 gm moles/litre to 1 gm mole/litre in the same volume. Then the order of this reaction is ?
A. 0
B. 1
C. 2
D. 3 - In a chemical reaction, represented by as shown in the bellow figure, it is observed that the (i) Rate of reaction increases by a factor of 4 on doubling the concentration of the reactant. (ii) Rate of reaction increases by a factor of 9 on trebling the concentration of the reactant. Then the rate of the reaction is proportional to(where, CA = concentration of the reactant)_____________________?
A. CA
B. CA2
C. CA3
D. CA4 - Rate of a gaseous phase reaction is given by the reaction shown in the bellow figure. The unit of rate constant is__________________?
A. (atm)-1
B. (hr)-1
C. (atm)-1.(hr)-1
D. atm.(hr)-1 - What is the order of chemical reaction as shown in the bellow figure, if it is found that the reaction rate doubles on doubling the concentration of B and also the reaction rate doubles when the concentrations of both A & B were doubled and quadrupled when the concentrations of both B & C were doubled ?
A. 1
B. 2
C. 3
D. 4 - A second order liquid phase reaction, A → B, is carried out in a mixed flow reactor operated in semi batch mode (no exit stream). The reactant A at concentration CAF is fed to the reactor at a volumetric flow rate of F. The volume of the reacting mixture is V and the density of the liquid mixture is constant. The mass balance for A is_______________________?
A. d(VCA)/dt = -F (CAF – CA) – kCA2V
B. d(VCA)/dt = F (CAF – CA) – kCA2V
C. d(VCA)/dt = -FCA – kCA2V
D. d(VCA)/dt = FCAF – kCA2V