A. Q
B. X
C. Ux
D. u
Related Mcqs:
- An estimator Q is an unbiased estimator of the population parameter Q if ___________________?
A. E(x) = µ
B. E(Q) =Q
C. E(Q) =Q
D. E(P) = P - The minimum variance unbiased estimator of the population mean is _______________?
A. 6/√n
B. S/√n
C. S2/n
D. 6x/√n - Sample variance S2 is unbiased estimator of population variance 26 because ________________?
A. E(S2) = s2
B. E(u) = X
C. E(P) = P
D. Ux = u - Random samples of size 17 are from a population that has 200 elements, a mean of 36, and a standard deviation of 8. which of the following best describes the from of the sampling distribution of the sample mean for this situation ?
A. Approximately normal because the sample size is small relative to the population size
B. Approximately normal because of the central limit theorem
C. Exactly
D. None of these alternatives is correct - Criteria to check a point estimator to be good are_____________?
A. Consistency
B. All Above
C. Unbiasedness
D. Efficiency - Consistency of an estimator can be checked by comparing____________?
A. Standard Deviation
B. Mean
C. mean Square Error
D. Variance - Let X1,X2,……,Xn be a random sample from a density,,,, f(x ι θ) where θ is a value of the random variable Θwith known density gΘ(θ) Then the estimator ∏(θ) with…/ respect to the prior gΘ(θ) is define as_________________E[∏(θ)ιX1,X2,…..,Xn] is called?
A. Posterior Bay’s estimator
B. Minimax estimator
C. Bay’s estimator
D. Sufficient estimator - Sample proportion P is __________ estimator?
A. Biased
B. Parameter
C. Unbiased
D. None of these - x=40 is estimator of _________________?
A. (U)
B. 6
C. Ux
D. 6/√n - Let X1,X2,……,Xn be a random sample from a density,,,, f(x ι θ) where θ is a value of the random variable Θwith known density gΘ(θ) Then the estimator ∏(θ) with…/ respect to the prior gΘ(θ) is define as______________E[∏(θ)ιX1,X2,…..,Xn] is called?
A. Posterior Bay’s estimator
B. Minimax estimator
C. Bay’s estimator
D. Sufficient estimator