A. All possible
B. Constant
C. Accuracy
D. Specific
Related Mcqs:
- A continuous random variable which can assume all possible values on scale in a given _______________?
A. Interval
B. Point
C. Time
D. Sample space - A binomial random variable can assume values from _________ to n?
A. 6
B. 3
C. 2
D. 0 - If 10% is added to each value of variable, the geometric mean of new variable is added by_______________?
A. 5%
B. 10%
C. No Change
D. 110%
E. 90% - Let Z1,Z2,….Zn be independent and identically distributedrandom variable, satisfying E[ι Zt ι]<∞. Let N be an integer valued random variable whose value n depends only on the values of the first n Z¡'s. Suppose E(N)< ∞, then E(Z1,Z2,….Zn)=E(N)E(Z) is called ?
A. Independence Equation
B. Sequential Probability Likelihood Equation
C. Neyman Pearson Lemma
D. Wald’s Equation - A Constant can assume _______ value?
A. One
B. Four
C. More than value
D. Resindent - A function probability that a random variable of x has a value less than is called _____________?
A. Random function
B. Distribution function
C. Continuous function
D. probability function - A random variable is that whose value is determined by the outcome of _________________?
A. Trial
B. event
C. Experiment
D. Random experiment - Let X1,X2,……,Xn be a random sample from a density,,,, f(x ι θ) where θ is a value of the random variable Θwith known density gΘ(θ) Then the estimator ∏(θ) with…/ respect to the prior gΘ(θ) is define as_________________E[∏(θ)ιX1,X2,…..,Xn] is called?
A. Posterior Bay’s estimator
B. Minimax estimator
C. Bay’s estimator
D. Sufficient estimator - Let X1,X2,……,Xn be a random sample from a density,,,, f(x ι θ) where θ is a value of the random variable Θwith known density gΘ(θ) Then the estimator ∏(θ) with…/ respect to the prior gΘ(θ) is define as______________E[∏(θ)ιX1,X2,…..,Xn] is called?
A. Posterior Bay’s estimator
B. Minimax estimator
C. Bay’s estimator
D. Sufficient estimator - A constant variable can take values______________?
A. Zero
B. Fixed
C. Not fixed
D. Nothing