A. Not a function
B. A continuous variable
C. A function
D. None of these
Related Mcqs:
- Let X1,X2,……,Xn be a random sample from a density,,,, f(x ι θ) where θ is a value of the random variable Θwith known density gΘ(θ) Then the estimator ∏(θ) with…/ respect to the prior gΘ(θ) is define as_________________E[∏(θ)ιX1,X2,…..,Xn] is called?
A. Posterior Bay’s estimator
B. Minimax estimator
C. Bay’s estimator
D. Sufficient estimator - Let X1,X2,……,Xn be a random sample from a density,,,, f(x ι θ) where θ is a value of the random variable Θwith known density gΘ(θ) Then the estimator ∏(θ) with…/ respect to the prior gΘ(θ) is define as______________E[∏(θ)ιX1,X2,…..,Xn] is called?
A. Posterior Bay’s estimator
B. Minimax estimator
C. Bay’s estimator
D. Sufficient estimator - Let Z1,Z2,….Zn be independent and identically distributedrandom variable, satisfying E[ι Zt ι]<∞. Let N be an integer valued random variable whose value n depends only on the values of the first n Z¡'s. Suppose E(N)< ∞, then E(Z1,Z2,….Zn)=E(N)E(Z) is called ?
A. Independence Equation
B. Sequential Probability Likelihood Equation
C. Neyman Pearson Lemma
D. Wald’s Equation - A random variable may be _____________?
A. fixed
B. continuous
C. discrete
D. discrete or continuous - A function probability that a random variable of x has a value less than is called _____________?
A. Random function
B. Distribution function
C. Continuous function
D. probability function - Probability distribution of a random variable is also know as Probability_________________?
A. Probability Function
B. Distribution Function
C. Probability Distribution
D. Probability Density Function - If c is non-random variable, the E(C) is_______________?
A. Zero
B. C
C. 1
D. 2 - A continuous random variable which can assume all possible values on scale in a given _______________?
A. Interval
B. Point
C. Time
D. Sample space - When the word random variable use in statistics it must have?
A. Variable
B. Probability distribution
C. Values
D. None of theseSubmitted by: Nimra Shaheen
- Which of the following statement is true for CDF of the random variable X?
A. From larger values of x
B. From smallest upto specific value of x
C. From zero to specific value of x
D. None of theseSubmitted by: Nimra Shaheen