A. 3x2 + 5x – 2 = 0
B. 3x2 + 5x + 2 = 0
C. 3x2 – 5x + 2 = 0
D. 3x2 – 5x – 2 = 0
The quadratic equation whose roots are reciprocal of 2x2 + 5x + 3 = 0 can be obtained by replacing x by 1/x.
Hence, 2(1/x)2 + 5(1/x) + 3 = 0
=> 3x2 + 5x + 2 = 0
A. 3x2 + 5x – 2 = 0
B. 3x2 + 5x + 2 = 0
C. 3x2 – 5x + 2 = 0
D. 3x2 – 5x – 2 = 0
The quadratic equation whose roots are reciprocal of 2x2 + 5x + 3 = 0 can be obtained by replacing x by 1/x.
Hence, 2(1/x)2 + 5(1/x) + 3 = 0
=> 3x2 + 5x + 2 = 0
A. 3, -3/2
B. 3/2, -3
C. -3/2, -3
D. 3/2, 3
A. -5, 3
B. 3, 5
C. -3, 5
D. -3, -5
A. x2 + 13x – 140 = 0
B. x2 – 13x + 140 = 0
C. x2 – 13x – 140 = 0
D. x2 + 13x + 140 = 0
A. 10, 3
B. -10, 3
C. -20, 3
D. -10, -3
A. 15
B. 14
C. 24
D. 26
A. -2, -1/2
B. 4, -1
C. 4, 1
D. -2, 5/2
A. -6, 7
B. -8, 7
C. 14, -3
D. -7, 6
A. -6, 3
B. 3, -2/3
C. -5, 2
D. -9, 2
A. 29
B. 27
C. 28
D. 7
A. If x < y
B. If x > y
C. If x ≤ y
D. If x ≥ y
Login below or Register Now.