A. 6738.9
B. 6753.5
C. 7058.3
D. 9000
Related Mcqs:
- At 60° C, vapour pressure of methanol and water are 84.562 kPa and 19.953 kPa respectively. An aqueous solution of methanol at 60° C exerts a pressure of 39.223 kPa; the liquid phase and vapour phase mole fractions of methanol are 0.1686 and 0.5714 respectively. Activity co-efficient of methanol is__________________?
A. 1.572
B. 1.9398
C. 3.389
D. 4.238 - A car tyre of volume 0.057 m3 is inflated to 300 kPa at 300 K. After the car is driven for 10 hours, the pressure in the tyre increases to 330 kPa. Assume air is an ideal gas and Cv for air is 21 J/mole.K. The change in the internal energy of air in the tyre in J/mole is__________________?
A. 380
B. 630
C. 760
D. 880 - A reasonably general expression for vapour-liquid phase equilibrium at low to moderate pressure is φi yi P = Yi xifi° where, Φ is a vapor fugacity component, Yi is the liquid activity coefficient and fi° is the fugacity of the pure component i. the Ki value (Yi = Ki xi) is therefore, in general a function of ______________________?
A. Temperature only
B. Temperature and pressure only
C. Temperature, pressure and liquid composition xi only
D. Temperature, pressure, liquid composition xi and vapour composition yi - Saturated solution of benzene in water is in equilibrium with a mixture of air and vapours of benzene and water at room temperature and pressure. Mole fraction of benzene in liquid is xB and the vapour pressures of benzene and water at these conditions are pv B and pv w respectively. The partial pressure of benzene in air-vapour mixture is_________________?
A. PvB
B. xB.PvB
C. (Patm – Pvw)xB
D. xB.Patm - Steam undergoes isentropic expansion in a turbine from 5000 kPa and 400°C (entropy = 6.65 kJ/kg K) to 150 kPa) (entropy of saturated liquid = 1.4336 kJ/kg. K, entropy of saturated vapour = 7.2234 kJ/kg. K) The exit condition of steam is_______________?
A. Superheated vapour
B. Partially condensed vapour with quality of 0.9
C. Saturated vapour
D. Partially condensed vapour with quality of 0.1 - Fugacity of a component in an ideal gas mixture is equal to the partial pressure of that component in the mixture. The fugacity of each component in a stable homogeneous solution at constant pressure and temperature ____________ as its mole fraction increases?
A. Decreases
B. Decreases exponentially
C. Increases
D. Remain constant - “The fugacity of a gas in a mixture is equal to the product of its mole fraction and its fugacity in the pure state at the total pressure of the mixture”. This is__________________?
A. The statement as per Gibbs-Helmholtz
B. Called Lewis-Randall rule
C. Henry’s law
D. None of these - The vapour pressure of water is given by, in Psat = A – (5000/T), where A is a constant, Psat is the vapour pressure in atm. and T is the temperature in K. The vapor pressure of water in atm. at 50°C is approximately__________________?
A. 0.07
B. 0.09
C. 0.11
D. 0.13 - The accumulation in a steady state combustion process, burning 1 kg mole of carbon with 1 kg mole of oxygen thereby producing 1 kg mole of carbon dioxide, is _____________ kg mole?
A. 1
B. 0
C. 16
D. 44 - 1m3 of an ideal gas at 500 K and 1000 kPa expands reversibly to 5 times its initial volume in an insulated container. If the specific heat capacity (at constant pressure) of the gas is 21 J/mole . K, the final temperature will be ?
A. 35 K
B. 174 K
C. 274 K
D. 154 K