A. Rotational and incompressible
B. Rotational and compressible
C. Irrotational and compressible
D. Irrotational and incompressible
Related Mcqs:
- Bernoulli’s equation for fluid flow is derived following certain assumptions. Out of the assumptions listed below, which set of assumptions is used in derivation of Bernoulli’s equation? A. Fluid flow is frictionless & irrotational. B. Fluid flow is steady. C. Fluid flow is uniform & turbulent. D. Fluid is compressible. E. Fluid is incompressible ?
A. A, C, D
B. B, D, E
C. A, B, E
D. A, D, E - Which of the following must be followed by the flow of a fluid (real or ideal)? (I) Newton’s law of viscosity. (II) Newton’s second law of motion. (III) The continuity equation. (IV) Velocity of boundary layer must be zero relative to boundary. (V) Fluid cannot penetrate a boundary?
A. I, II, III
B. II, III, V
C. I, II, V
D. II, IV, V - In case of turbulent flow of a Newtonian fluid in a straight pipe, the maximum velocity is equal to (where, Vavg = average fluid velocity)?
A. Vavg
B. 1.2 Vavg
C. 1.5 Vavg
D. 1.8 Vavg - The ratio of average fluid velocity to the maximum velocity in case of laminar flow of a Newtonian fluid in a circular pipe is_____________________?
A. 0.5
B. 1
C. 2
D. 0.66 - The pressure drop per unit length of pipe incurred by a fluid ‘X’ flowing through pipe is Δp. If another fluid ‘Y’ having both the specific gravity & density just double of that of fluid ‘X’, flows through the same pipe at the same flow rate/average velocity, then the pressure drop in this case will be__________________?
A. Δp
B. 2Δp
C. Δp2
D. Δp/2 - In which type of fluid flow, the velocity of flow of fluid changes from point to point in the fluid at any instant ?
A. Rotational
B. Unsteady
C. Turbulent
D. Non-uniform - The boundary layer is that part of a moving fluid, in which the fluid velocity is_________________?
A. Affected by the fluid flow pressure
B. Constant
C. Affected by the presence of a solid boundary
D. All A., B. and C. - What type of motion the fluid element undergoes, when it changes from one position to another position, such that the angle between the two sides changes ?
A. Rotation
B. Translation
C. Linear deformation
D. Angular deformation - Drag co-efficient for motion of spherical particles in a stationary fluid in the stoke’s law range is_________________?
A. 24/NRe,P
B. 16/NRe,P
C. 64/NRe,P
D. 48/NRe,P - Cd, Cc and Cv are related (for flow through an orifice) as (where, Cd = discharge co-efficient, Cc = co-efficient of contraction = (area of jet at vena-contracta/area of opening), Cv = co-efficient of velocity = (actual velocity at vena-contracta/theoretical velocity)?
A. Cd = Cc/Cv
B. Cd = Cc.Cv
C. Cd = Cv/ Cc
D. None of these