A. An ordinary non-linear differential equation
B. An algebraic differential equation
C. A linear partial differential equation
D. A non-linear partial differential equation
Related Mcqs:
- A stirred tank reactor compared to tubular-flow reactor provides____________________?
A. More uniform operating conditions
B. Permits operation at the optimum temperature for a long reaction time
C. Higher overall selectivity for a first order consecutive reaction
D. All A., B. and C. - Pure ethanol vapor is fed to a reactor packed with alumina catalyst, at the rate of 100 kmole / hr. The reactor products comprise: ethylene: 95 kmole / hr, water vapour: 97.5 k mole / hr and diethyl ether: 2.5 kmole/hr. The reactions occuring can be represented by: C2H5OH → C2H4 + H2O 2C2H5OH → C2H5 – O – C2H5 + H2O The percent conversion of ethanol in the reactor is________________?
A. 100
B. 97.5
C. 95
D. 2.5 - A liquid phase reaction is to be carried out under isothermal conditions. The reaction rate as a function of conversion has been determined experimentally and is shown in the figure given below. What choice of reactor or combination of reactors will require the minimum overall reactor volume, if a conversion of 0.9 is desired ?
A. CSTR followed by a PFR
B. PFR followed by a CSTR
C. CSTR followed by a PFR followed by a CSTR
D. PFR followed by a CSTR followed by a PFR - For a tubular reactor with space time ‘η’ and residence time ‘ζ’, the following statement holds good ?
A. η and θ are always equal
B. η = θ, when the fluid density changes in the reactor
C. η = θ, for an isothermic tubular reactor in which the density of the process fluid is constant
D. η = θ, for a non-isothermal reactor - For a tubular flow reactor with uniform concentration and temperature, the independent variable is___________________?
A. Time
B. Length
C. Diameter
D. None of these - An isothermal irreversible reaction is being carried out in an ideal tubular flow reactor. The conversion in this case will ______________ with decrease in space time?
A. Increase
B. Increase exponentially
C. Decrease
D. Remain unchanged - The following gas phase reaction is taking place in a plug flow reactor. A stoichiometric mixture of A and B at 300 K is fed to the reactor. At 1 m along the length of the reactor, the temperature is 360 K. The pressure drop is negligible and an ideal gas behaviour can be assumed. Identify the correct expression relating the concentration of A at the inlet (CA0), concentration of A at 1m (CA) and the corresponding conversion of A (X) ?
A. CA = 1.2 CA0 (1 – X)/(1 – 0.33X)
B. CA = 1.2 CA0 (1 – X)/(1 – 0.5X)
C. CA = 0.83 CA0 (1 – X)/(1 – 0.33X)
D. CA = 0.83 CA0 (1 – X)/(1 – 0.5X) - The gas phase reaction 2A ⇌ B is carried out in an isothermal plug flow reactor. The feed consists of 80 mole % A and 20 mole % inerts. If the conversion of A at the reactor exit is 50%, then CA/CA0 at the outlet of the reactor is _______________________?
A. 2/3
B. 5/8
C. 1/3
D. 3/8 - In case of a _____________ reactor, the composition in the reactor and at the exit of the reactor is the same ?
A. Semi-batch
B. Tubular
C. Batch
D. Back-mix - A second order liquid phase reaction, A → B, is carried out in a mixed flow reactor operated in semi batch mode (no exit stream). The reactant A at concentration CAF is fed to the reactor at a volumetric flow rate of F. The volume of the reacting mixture is V and the density of the liquid mixture is constant. The mass balance for A is_______________________?
A. d(VCA)/dt = -F (CAF – CA) – kCA2V
B. d(VCA)/dt = F (CAF – CA) – kCA2V
C. d(VCA)/dt = -FCA – kCA2V
D. d(VCA)/dt = FCAF – kCA2V