A. 0.16
B. 0.144
C. 0.152
D. 0.136
Related Mcqs:
- The following gas phase reaction is taking place in a plug flow reactor. A stoichiometric mixture of A and B at 300 K is fed to the reactor. At 1 m along the length of the reactor, the temperature is 360 K. The pressure drop is negligible and an ideal gas behaviour can be assumed. Identify the correct expression relating the concentration of A at the inlet (CA0), concentration of A at 1m (CA) and the corresponding conversion of A (X) ?
A. CA = 1.2 CA0 (1 – X)/(1 – 0.33X)
B. CA = 1.2 CA0 (1 – X)/(1 – 0.5X)
C. CA = 0.83 CA0 (1 – X)/(1 – 0.33X)
D. CA = 0.83 CA0 (1 – X)/(1 – 0.5X) - Pure ethanol vapor is fed to a reactor packed with alumina catalyst, at the rate of 100 kmole / hr. The reactor products comprise: ethylene: 95 kmole / hr, water vapour: 97.5 k mole / hr and diethyl ether: 2.5 kmole/hr. The reactions occuring can be represented by: C2H5OH → C2H4 + H2O 2C2H5OH → C2H5 – O – C2H5 + H2O The percent conversion of ethanol in the reactor is________________?
A. 100
B. 97.5
C. 95
D. 2.5 - For the reversible reaction A ⇌ 2B, if the equilibrium constant K is 0.05 mole/litre; starting from initially 2 moles of A and zero moles of B, how many moles will be formed at equilibrium ?
A. 0.253
B. 0.338
C. 0.152
D. 0.637 - The reaction A → B is conducted in an adiabatic plug flow reactor (PFR). Pure A at a concentration of 2 kmol/m3is fed to the reactor at the rate of 0.01 m3 /s and at a temperature of 500 K. If the exit conversion is 20%, then the exit temperature (in k) is (Data: Heat of reaction at 298 K = – 50000 kJ/ kmole of A reacted Heat capacities CPA = CPB = 100kJ/kmole. K (may be assumed to be independent of temperature)) ?
A. 400
B. 500
C. 600
D. 1000 - Rate constant for a first order reaction does not depend upon reaction time, extent of reaction and the initial concentration of reactants; but it is a function of reaction temperature. In a chemical reaction, the time required to reduce the concentration of reactant from 100 gm moles/litre to 50 gm moles/litre is same as that required to reduce it from 2 gm moles/litre to 1 gm mole/litre in the same volume. Then the order of this reaction is ?
A. 0
B. 1
C. 2
D. 3 - The ratio of moles of a reactant converted into the desired product to that converted into unwanted product is called_________________?
A. Operational yield
B. Relative yield
C. Selectivity
D. None of these - With an increase in pressure in gaseous phase chemical reactions, the fractional conversion ______________ when the number of moles decreases?
A. Increases
B. Decreases
C. Remain unaffected
D. Unpredictable from the data - A liquid phase reaction is to be carried out under isothermal conditions. The reaction rate as a function of conversion has been determined experimentally and is shown in the figure given below. What choice of reactor or combination of reactors will require the minimum overall reactor volume, if a conversion of 0.9 is desired ?
A. CSTR followed by a PFR
B. PFR followed by a CSTR
C. CSTR followed by a PFR followed by a CSTR
D. PFR followed by a CSTR followed by a PFR - The gas phase reaction 2A ⇌ B is carried out in an isothermal plug flow reactor. The feed consists of 80 mole % A and 20 mole % inerts. If the conversion of A at the reactor exit is 50%, then CA/CA0 at the outlet of the reactor is _______________________?
A. 2/3
B. 5/8
C. 1/3
D. 3/8 - Second order consecutive irreversible reaction as shown in the bellow figure, were carried out in a constant volume isothermal batch reactor with different initial feed compositions. Reactor temperature was same in all the cases. In experiments where the ratio of concentration of B to that of A in the initial feed was less than 0.5, the concentration of B increased first, reached a maximum and then declined with time. However, for all experiments where this concentration ratio was 0.5 or above, concentration of B decreased monotonically with time right from the beginning. What is the ratio of the two rate constants (k1/k2) ?
A. 1/4
B. 1/2
C. 2
D. 4