A. Non-dimensional factor
B. Factor of safety
C. Conversion factor for individual film heat transfer co-efficient to overall heat transfer coefficient
D. None of these
Related Mcqs:
- Air is to be heated by condensing steam. Two heat exchangers are available (i) a shell and tube heat exchanger and (ii) a finned tube heat exchanger. Tube side heat transfer area are equal in both the cases. The recommended arrangement is________________?
A. Finned tube heat exchanger with air inside and steam outside
B. Finned tube heat exchanger with air outside and steam inside
C. Shell and tube heat exchanger with air inside tubes and steam on shell side
D. Shell and tube heat exchanger with air on shell side and steam inside tubes - For the same heat load and mass flow rate in the tube side of a shell and tube heat exchanger, one may use multipass on the tube side, because it__________________?
A. Decreases the pressure drop
B. Decreases the outlet temperature of cooling medium
C. Increases the overall heat transfer coefficient
D. None of these - Steam is to be condensed in a shell and tube heat exchanger, 5 m long with a shell diameter of 1 m. Cooling water is to be used for removing the heat. Heat transfer co-efficient for the cooling water, whether on shell side or tube side is the same. The best arrangement is_____________?
A. Vertical heat exchanger with steam on tube side
B. Vertical heat exchanger with steam on shell side
C. Horizontal heat exchanger with steam on tube side
D. Horizontal heat exchanger with steam on shell side - The overall heat transfer co-efficient for a shell and tube heat exchanger for clean surfaces is U0 = 400 W/m2.K. The fouling factor after one year of operation is found to be hd0 = 2000 W/m2.K. The overall heat transfer co-efficient at this time is _____________________?
A. 1200 W/m2.K
B. 894 W/m2.K
C. 333 W/m2.K
D. 287 W/m2.K - In a shell and tube heat exchanger, putting a longitudinal baffle across the shell, forces the shell side fluid to pass _____________ through the heat exchanger ?
A. Once
B. Twice
C. Thrice
D. Four times - The advantage of using a 1 – 2 shell and tube heat exchanger over a 1 – 1 shell and tube heat exchanger is_________________?
A. Lower tube side pressure drop
B. Lower shell side pressure drop
C. Higher tube side heat transfer co-efficient
D. Higher shell side heat transfer co-efficient - In case of a multipass shell and tube heat exchanger, providing a baffle on the shell side ______________ the heat transfer rate?
A. Increases
B. Decreases
C. Does not affect
D. May increase or decrease, depends on the type of baffle - Which is the best tube arrangement (in a shell and tube heat exchanger) if the fluids are clean and non-fouling ?
A. Square pitch
B. Triangular pitch
C. Diagonal square pitch
D. None of these - The ratio of velocity head to tube side return loss in case of a multipass shell and tube heat exchanger is ________________?
A. 2
B. 1/2
C. 4
D. 1/4 - Which of the following parameters is increased by use of finned tube in a multipass shell and tube heat exchanger ?
A. Tube side pressure drop and the heat transfer rate
B. Convective heat transfer co-efficient
C. Effective tube surface area for convective heat transfer
D. All A. B. and C.