A. 0
B. 1
C. 2
D. 3
Related Mcqs:
- In a first order reaction, the time required to reduce the concentration of reactant from 1 mole/litre to 0.5 mole/litre will be ______________ that required to reduce it from 10 moles/litre to 5 moles/litre in the same volume ?
A. More than
B. Less than
C. Same as
D. Data insufficient; can’t be predicted - In a chemical reaction, represented by as shown in the bellow figure, it is observed that the (i) Rate of reaction increases by a factor of 4 on doubling the concentration of the reactant. (ii) Rate of reaction increases by a factor of 9 on trebling the concentration of the reactant. Then the rate of the reaction is proportional to(where, CA = concentration of the reactant)_____________________?
A. CA
B. CA2
C. CA3
D. CA4 - Concentration of the limiting reactant (with initial concentration of a moles/litre) after time t is (a-x). Then ‘t’ for a first order reaction is given by____________________?
A. k. t = ln a/(a – x)
B. k. t = x/a (a – x)
C. k. t = ln (a – x)/a
D. k. t = ln a (a – x)/x - For the reversible reaction A ⇌ 2B, if the equilibrium constant K is 0.05 mole/litre; starting from initially 2 moles of A and zero moles of B, how many moles will be formed at equilibrium ?
A. 0.253
B. 0.338
C. 0.152
D. 0.637 - Second order consecutive irreversible reaction as shown in the bellow figure, were carried out in a constant volume isothermal batch reactor with different initial feed compositions. Reactor temperature was same in all the cases. In experiments where the ratio of concentration of B to that of A in the initial feed was less than 0.5, the concentration of B increased first, reached a maximum and then declined with time. However, for all experiments where this concentration ratio was 0.5 or above, concentration of B decreased monotonically with time right from the beginning. What is the ratio of the two rate constants (k1/k2) ?
A. 1/4
B. 1/2
C. 2
D. 4 - In a chemical reaction as shown in the bellow figure, it is observed that the (i) Rate of formation of ‘P’ is doubled on doubling the concentration of ‘X’ (ii) Rate of formation of ‘P’ is quadrupled on doubling the concentration of ‘Y’ (iii) Doubling the concentration of ‘Z’ does not affect the rate of formation of ‘P’ What is the order of the above chemical reaction ?
A. Zeroth order
B. First order
C. Second order
D. Third order - For the reaction as shown in the bellow figure, the rate of formation of Z is 0.2 gm mole/litre.hr. What is the rate of disappearance of X in gm mole/litre.hr ?
A. 0.4
B. 0.1
C. 0.2
D. None of these - If n = overall order of a chemical reaction. a = initial concentration of reactant. t = time required to complete a definite fraction of the reaction. Then pick out the correct relationship ?
A. t ∝ 1/an
B. t ∝ 1/an – 1
C. t ∝ 1/an + 1
D. t ∝ an - In a reversible chemical reaction having two reactants in equilibrium, if the concentration of the reactants are doubled, then the equilibrium constant will________________?
A. Remain the same
B. Be halved
C. Also be doubled
D. Become one fourth - If the time required to change the concentration of reactant to half its original value is independent of the initial concentration, the order of reaction is _______________?
A. Zero
B. One
C. Two
D. Three