A. Non-isothermal gas reaction
B. Variable fluid density systems
C. Constant fluid density systems
D. Gas reactions with changing number of moles
Related Mcqs:
- A pollutant P degrades according to first order kinetics. An aqueous stream containing P at 2 kmole/m3 and volumetric flow rate 1m3 /h requires a mixed flow reactor of volume V to bring down the pollutant level to 0.5 kmole/m3. The inlet concentration of the pollutant is now doubled and the volumetric flow rate is tripled. If the pollutant level is to be brought down to the same level of 0.5 k.mole/m3, the volume of the mixed flow reactor should be increased by a factor of_______________?
A. 7
B. 6
C. 3
D. 7/3 - For a mixed flow reactor operating at steady state, the rate of reaction is given by______________?
A. (FA0/V) – (dCA/dt)
B. (FA0/V) + (dCA/dt)
C. (FA0/V) XA
D. -(dCA/dt) - In an ideal mixed reactor (at steady state), the ___________________?
A. Space time is equivalent to holding time for constant density systems
B. Composition throughout the reactor remains same
C. Exit stream has the same composition as the fluid within the reactor
D. All A., B. and C. - The conversion in a mixed reactor/accomplishing a reaction A → 3R is 50% when gaseous reactant ‘A’ is introduced at the rate of 1 litre/second and the leaving flow rate is 2 litres/second. The holding time for this operation is _______________ second?
A. 0.5
B. 1
C. 2
D. 3 - A second order liquid phase reaction, A → B, is carried out in a mixed flow reactor operated in semi batch mode (no exit stream). The reactant A at concentration CAF is fed to the reactor at a volumetric flow rate of F. The volume of the reacting mixture is V and the density of the liquid mixture is constant. The mass balance for A is_______________________?
A. d(VCA)/dt = -F (CAF – CA) – kCA2V
B. d(VCA)/dt = F (CAF – CA) – kCA2V
C. d(VCA)/dt = -FCA – kCA2V
D. d(VCA)/dt = FCAF – kCA2V - An irreversible aqueous phase reaction, A + B → P, is carried out in an adiabatic mixed flow reactor. A feed containing 4kmole/m3 of each A and B enters the reactor at 8m3 /hr. If the temperature of the exit stream is never to exceed 390 K, what is the maximum inlet feed temperature allowed? Data: Heat of reaction = – 50 kJ/mole Density of the reacting mixture = 1000kg/m3 Specific heat of reacting mixture = 2kJ/kg.K The above data can be assumed to be independent of temperature and composition?
A. 190
B. 290
C. 390
D. 490 - The size of plug flow reactor (PFR) for all positive reaction orders and for any given duty, is _____________________ that of mixed reactor?
A. Greater than
B. Equal to
C. Smaller than
D. Unpredictable from the data - With increase in the order of reaction (for all positive reaction orders), the ratio of the volume of mixed reactor to the volume of plug flow reactor (for identical feed composition, flow rate and conversion)?
A. Increases
B. Decreases
C. Remain same
D. Increases linearly - An isothermal aqueous phase reversible reaction, P ⇌ R, is to be carried out in a mixed flow reactor. The reaction rate in k.mole/m3 .h is given by, r = 0.5CP – 0.125CR. A stream containing only P enters the reactor. The residence time required (in hours) for 40% conversion of P is_________________?
A. 0.80
B. 1.33
C. 1.60
D. 2.67 - A gaseous reactant is introduced in a mixed reactor of 3 litres volume at the rate of 1 litre/second. The space time is ______________ seconds?
A. 1
B. 3
C. 1/3
D. 32