A. 0.253
B. 0.338
C. 0.152
D. 0.637
Related Mcqs:
- Rate constant for a first order reaction does not depend upon reaction time, extent of reaction and the initial concentration of reactants; but it is a function of reaction temperature. In a chemical reaction, the time required to reduce the concentration of reactant from 100 gm moles/litre to 50 gm moles/litre is same as that required to reduce it from 2 gm moles/litre to 1 gm mole/litre in the same volume. Then the order of this reaction is ?
A. 0
B. 1
C. 2
D. 3 - In a first order reaction, the time required to reduce the concentration of reactant from 1 mole/litre to 0.5 mole/litre will be ______________ that required to reduce it from 10 moles/litre to 5 moles/litre in the same volume ?
A. More than
B. Less than
C. Same as
D. Data insufficient; can’t be predicted - For the reaction as shown in the bellow figure, the rate of formation of Z is 0.2 gm mole/litre.hr. What is the rate of disappearance of X in gm mole/litre.hr ?
A. 0.4
B. 0.1
C. 0.2
D. None of these - In a reversible chemical reaction having two reactants in equilibrium, if the concentration of the reactants are doubled, then the equilibrium constant will________________?
A. Remain the same
B. Be halved
C. Also be doubled
D. Become one fourth - A batch adiabatic reactor at an initial temperature of 373°K is being used for the reaction, A → B. Assume the heat of reaction is – 1kJ/mole at 373°K and heat capacity of both A and B to be constant and equal to 50J/mole.K. The temperature rise after a conversion of 0.5 will be ____________?
A. 5°C
B. 10°C
C. 20°C
D. 100°C - Concentration of the limiting reactant (with initial concentration of a moles/litre) after time t is (a-x). Then ‘t’ for a first order reaction is given by____________________?
A. k. t = ln a/(a – x)
B. k. t = x/a (a – x)
C. k. t = ln (a – x)/a
D. k. t = ln a (a – x)/x - In the hydrodealkylation of toluene to benzene, the following reactions occur: C7H8 + H2 → C6H6 + CH4 2C6H6 ⇌ C12H10 + H2 Toluene and hydrogen are fed to a reactor in a molar ratio 1:5.80% of the toluene gets converted and the selectivity of benzene(defined as moles of benzene formed/moles of toluene converted) is 90%. The fractional conversion of hydrogen is_______________________?
A. 0.16
B. 0.144
C. 0.152
D. 0.136 - An isothermal aqueous phase reversible reaction, P ⇌ R, is to be carried out in a mixed flow reactor. The reaction rate in k.mole/m3 .h is given by, r = 0.5CP – 0.125CR. A stream containing only P enters the reactor. The residence time required (in hours) for 40% conversion of P is_________________?
A. 0.80
B. 1.33
C. 1.60
D. 2.67 - The rate expression for a heterogeneous catalytic reaction is given by, – rA = K.KA PA(1 + KA.PA + KR.PR), where K is surface reaction rate constant and KA and KR are absorption equilibrium constants of A and R respectively. If KR PR >> (1 + KA PA), the apparent activation energy EA is equal to (given E is the activation energy for the reaction and ΔHR and ΔHA are the activation energies of adsorption of R and A) ?
A. E
B. E + ΔHA
C. E + ΔHA – ΔHR)
D. ΔHA + ΔHR - The rate controlling step for the heterogeneous irreversible catalytic reaction A(g) + B(g) → C(g) is the surface reaction of absorbed A with absorbed B to give adsorbed C. The rate expression for this reaction can then be written as (where, KA, KB and KC are the equilibrium constants and is the rate constant of the rate controlling step) ?
A. k KA pApB / (1 + KApA + KBpB)
B. k KAKB pApB / (1 + KApA + KBpB)
C. k KAKB pApB / (1 + KApA + KBpB + KCpC)
D. k KAKB pApB / (1 + KApA + KBpB + KCpC)2