A. Concentration of the constituents only
B. Quantities of the constituents only
C. Temperature only
D. All A, B. and C
Related Mcqs:
- Entropy change of mixing two liquid substances depends upon the_________________?
A. Molar concentration
B. Quantity (i.e. number of moles)
C. Both A. and B
D. Neither A. nor B - Those solutions in which there is no volume change upon mixing the components in the liquid state and which, when diluted do not undergo any heat change (i.e. heat of dilution is zero), are called ____________ solutions?
A. Ideal
B. Real
C. Isotonic
D. None of these - If an ideal solution is formed by mixing two pure liquids in any proportion, then the ___________________ of mixing is zero?
A. Enthalpy
B. Volume
C. Both A. & B.
D. Neither A nor B - Gibbs free energy of mixing at constant pressure and temperature is always__________________?
A. 0
B. ∞
C. + ve
D. – ve - Gibbs free energy (G) is represented by, G = H – TS, whereas Helmholtz free energy, A. is given by, A = E – TS. Which of the following is the Gibbs-Helmholtz equation ?
A. [∂(G/T)/∂T] = – (H/T2)
B. [∂(A/T)/∂T]V = – E/T2
C. Both A. and B.
D. Neither A. nor B. - Gibbs free energy per mole for a pure substance is equal to the__________________?
A. Latent heat of vaporisation
B. Chemical potential
C. Molal boiling point
D. Heat capacity - The molar excess Gibbs free energy, gE, for a binary liquid mixture at T and P is given by, (gE/RT) = A . x1. x2, where A is a constant. The corresponding equation for ln y1, where y1 is the activity co-efficient of component 1, is__________________?
A. A . x22
B. Ax1
C. Ax2
D. Ax12 - When liquid and vapour phases of one component system are in equilibrium (at a given temperature and pressure), the molar free energy is__________________?
A. More in vapour phase
B. More in liquid phase
C. Same in both the phases
D. Replaced by chemical potential which is more in vapour phase - A reasonably general expression for vapour-liquid phase equilibrium at low to moderate pressure is φi yi P = Yi xifi° where, Φ is a vapor fugacity component, Yi is the liquid activity coefficient and fi° is the fugacity of the pure component i. the Ki value (Yi = Ki xi) is therefore, in general a function of ______________________?
A. Temperature only
B. Temperature and pressure only
C. Temperature, pressure and liquid composition xi only
D. Temperature, pressure, liquid composition xi and vapour composition yi - “The equilibrium value of the mole fraction of the gas dissolved in a liquid is directly proportional to the partial pressure of that gas above the liquid surface”. This statement pertaining to the solubility of gases in liquid is the ______________ law?
A. Raoult’s
B. Henry’s
C. Amagat’s
D. None of these