A. 2
B. 2
D. 1/2
Related Mcqs:
- Applying a pressure drop across a capillary results in a volumetric flow rate ‘Q’ under laminar flow conditions. The flow rate for the same pressure drop, in a capillary of the same length but half the radius is____________________?
A. Q/2
B. Q/4
C. Q/8
D. Q/16 - In a fully turbulent flow (Re > 105) in a pipe of diameter ‘d’, for a constant pressure gradient, the dependence of volumetric flow rate of an incompressible fluid is_______________?
A. d
B. d2
C. d2.5
D. d4 - What is the shear rate at the pipe wall, in case of laminar flow of Newtonian fluids in a pipe of diameter ‘D’ & length ‘L’ incurring a pressure drop ‘Δp’ with average velocity ‘Vavg’ ?
A. D Δp/8L
B. D Δp/4L
C. 8 Vavg/D
D. 4 Vavg/D - For the laminar flow of a fluid in a circular pipe of radius R, the Hagen-Poisseule equation predicts the volumetric flow rate to be proportional to____________________?
A. R
B. R2
C. R4
D. R0.5 - A pipe has a porous section of length L as shown in the figure. Velocity at the start of this section of V0. If fluid leaks into the pipe through the porous section at a volumetric rate per unit area q(x/L)2, what will be axial velocity in the pipe at any „x‟? Assume incompressible one dimensional flow i.e., no gradients in the radial direction ?
A. VX = V0 + q (x3/L2D)
B. VX = V0 + ⅓q (x3/L2)
C. VX = V0 + 2q (x2/LD)
D. VX = V0 + (4/3) q (x3/L2D) - The pressure drop per unit length of pipe incurred by a fluid ‘X’ flowing through pipe is Δp. If another fluid ‘Y’ having both the specific gravity & density just double of that of fluid ‘X’, flows through the same pipe at the same flow rate/average velocity, then the pressure drop in this case will be__________________?
A. Δp
B. 2Δp
C. Δp2
D. Δp/2 - For laminar flow of Newtonian fluids through a circular pipe, for a given pressure drop and length & diameter of pipe, the velocity of fluid is proportional to (where, μ = fluid viscosity ) ?
A. μ
B. 1/μ
C. √μ
D. 1/√μ - Horsepower increase of a centrifugal gas compressor without altering the volumetric flow rate will _____________ the gas discharge pressure?
A. Increase
B. Decrease
C. Not change
D. Exponentially decrease - For laminar flow of Newtonian fluid in a circular pipe, the velocity distribution is a function of the distance ‘d’ measured from the centre line of the pipe, and it follows a ______________ relationship?
A. Logarithmic
B. Parabolic
C. Hyperbolic
D. Linear - The velocity profile exhibited by laminar flow of Newtonian fluids is such that the velocity distribution w.r.t. radius of the circular pipe is a/an ______________ with the apex at the centre line of the pipe?
A. Hyperbola
B. Parabola
C. Semi-circle
D. Semi-ellipse