A. Volume to surface area
B. Perimeter to surface area
C. Surface area to volume
D. Surface area to perimeter
Chemical Heat Transfer
Chemical Heat Transfer
A. Boiling point
B. Dynamic viscosity
C. Kinematic viscosity
D. Density
A. t4
B. T4
C. 1/t4
D. 1/T4
A. Colburn
B. Reynolds
C. Prandtl
D. None of these
A. 0.38-0.78
B. 0.5-50
C. 100-1000
D. 5-50
A. Boiling point (at the same pressure)
B. Viscosity
C. Density
D. Thermal conductivity
A. 0.001
B. 0.72
C. 70
D. 150
A. Less corrosion problems
B. Flexibility possible in the baffle arrangement
C. Low pressure drop
D. High heat transfer co-efficient
A. Increase the heating load
B. Impart structural strength
C. Account for the uneven expansion of shell and tube bundles
D. Facilitate increase of shell length, if needed
A. Because of simplicity of fabrication
B. For low heat load
C. To obtain higher heat transfer co-efficient and shorter tube
D. To reduce the pressure drop