A. varies of data P2/6
B. S.D. of data h2/12
C. M.D. of data h2/6
D. Variance of data h2/12
Related Mcqs:
- suppose for 40 observation, the variance is 50. If all the observation are increased by 20, the variance of these increased observation will be_________?
A. 50
B. 70
C. 50/20
D. 50-20=30 - The variance of 5 numbers is 10. If each number is divided by 2, then variance of new number is_____________?
A. 20
B. 5
C. 2.5
D. 0 - The variance of 5 numbers is 10. If each number is divided by 2, then the variance of new numbers is______________?
A. 20
B. 5
C. 2.5
D. 5.5
E. 0 - Suppose for 40 observations, the variance is 50. If all the observations are increased by 20, the variance of these increased observation will be______________?
A. 50
B. 70
C. 50/20
D. 50-20 = 30
E. 50 - Sample variance S2 is unbiased estimator of population variance 26 because ________________?
A. E(S2) = s2
B. E(u) = X
C. E(P) = P
D. Ux = u - What is the variance of binomial distribution __________________?
A. n p
B. np (1 – p)
C. np/q
D. nq/p - Let X1,X2,……,Xn be a random sample from a density,,,, f(x ι θ) where θ is a value of the random variable Θwith known density gΘ(θ) Then the estimator ∏(θ) with…/ respect to the prior gΘ(θ) is define as_________________E[∏(θ)ιX1,X2,…..,Xn] is called?
A. Posterior Bay’s estimator
B. Minimax estimator
C. Bay’s estimator
D. Sufficient estimator - Let X1,X2,……,Xn be a random sample from a density,,,, f(x ι θ) where θ is a value of the random variable Θwith known density gΘ(θ) Then the estimator ∏(θ) with…/ respect to the prior gΘ(θ) is define as______________E[∏(θ)ιX1,X2,…..,Xn] is called?
A. Posterior Bay’s estimator
B. Minimax estimator
C. Bay’s estimator
D. Sufficient estimator - Variance remains unchanged by change of_____________?
A. Origin
B. Scale
C. Both
D. None of these - Mean deviation, Variance and Standard Deviation of the values 4,4,4,4,4,4 is_______________?
A. 4
B. 8
C. 2
D. 0