A. Supersaturated
B. Superheated
C. Both A. and B
D. Neither A. nor B
Related Mcqs:
- Saturated solution of benzene in water is in equilibrium with a mixture of air and vapours of benzene and water at room temperature and pressure. Mole fraction of benzene in liquid is xB and the vapour pressures of benzene and water at these conditions are pv B and pv w respectively. The partial pressure of benzene in air-vapour mixture is_________________?
A. PvB
B. xB.PvB
C. (Patm – Pvw)xB
D. xB.Patm - Steam undergoes isentropic expansion in a turbine from 5000 kPa and 400°C (entropy = 6.65 kJ/kg K) to 150 kPa) (entropy of saturated liquid = 1.4336 kJ/kg. K, entropy of saturated vapour = 7.2234 kJ/kg. K) The exit condition of steam is_______________?
A. Superheated vapour
B. Partially condensed vapour with quality of 0.9
C. Saturated vapour
D. Partially condensed vapour with quality of 0.1 - The work done in isothermal compression compared to that in adiabatic compression will be__________________?
A. Less
B. More
C. Same
D. More or less depending upon the extent of work done - For water at 300°C, it has a vapour pressure 8592.7 kPa and fugacity 6738.9 kPa Under these conditions, one mole of water in liquid phase has a volume of 25.28 cm3 and that in vapour phase in 391.1 cm3.Fugacity of water (in kPa) at 9000 kPa will be__________________?
A. 6738.9
B. 6753.5
C. 7058.3
D. 9000 - The vapour pressure of water is given by, in Psat = A – (5000/T), where A is a constant, Psat is the vapour pressure in atm. and T is the temperature in K. The vapor pressure of water in atm. at 50°C is approximately__________________?
A. 0.07
B. 0.09
C. 0.11
D. 0.13 - The specific heat of saturated water vapour at 100°C is__________________?
A. ∞
B. -ve
C. 0
D. +ve - On a P-V diagram of an ideal gas, suppose a reversible adiabatic line intersects a reversible isothermal line at point A. Then at a point A, the slope of the reversible adiabatic line (∂P/∂V)s and the slope of the reversible isothermal line (∂P/∂V)T are related as (where, y = Cp/Cv) ?
A. (∂P/∂V)S = (∂P/∂V)T
B. (∂P/∂V)S = [(∂P/∂V)T]Y
C. (∂P/∂V)S = y(∂P/∂V)T
D. (∂P/∂V)S = 1/y(∂P/∂V)T - At 60° C, vapour pressure of methanol and water are 84.562 kPa and 19.953 kPa respectively. An aqueous solution of methanol at 60° C exerts a pressure of 39.223 kPa; the liquid phase and vapour phase mole fractions of methanol are 0.1686 and 0.5714 respectively. Activity co-efficient of methanol is__________________?
A. 1.572
B. 1.9398
C. 3.389
D. 4.238 - Assuming applicability of ideal gas law, the pure component volume of the vapor in a saturated gas can be calculated from theoretical relationship. The volumetric composition of a vapor saturated gas is independent of the___________________?
A. Nature of the liquid
B. Nature of the gas
C. Temperature of the liquid
D. Total pressure - What happens in a reversible adiabatic compression ?
A. Heating occurs
B. Cooling occurs
C. Pressure is constant
D. Temperature is constant